Metamath Proof Explorer


Theorem nlmnrg

Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis nlmnrg.1 F = Scalar W
Assertion nlmnrg W NrmMod F NrmRing

Proof

Step Hyp Ref Expression
1 nlmnrg.1 F = Scalar W
2 eqid Base W = Base W
3 eqid norm W = norm W
4 eqid W = W
5 eqid Base F = Base F
6 eqid norm F = norm F
7 2 3 4 1 5 6 isnlm W NrmMod W NrmGrp W LMod F NrmRing x Base F y Base W norm W x W y = norm F x norm W y
8 7 simplbi W NrmMod W NrmGrp W LMod F NrmRing
9 8 simp3d W NrmMod F NrmRing