Metamath Proof Explorer


Theorem nlmtlm

Description: A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion nlmtlm WNrmModWTopMod

Proof

Step Hyp Ref Expression
1 nlmngp WNrmModWNrmGrp
2 nlmlmod WNrmModWLMod
3 lmodabl WLModWAbel
4 2 3 syl WNrmModWAbel
5 ngptgp WNrmGrpWAbelWTopGrp
6 1 4 5 syl2anc WNrmModWTopGrp
7 tgptmd WTopGrpWTopMnd
8 6 7 syl WNrmModWTopMnd
9 eqid ScalarW=ScalarW
10 9 nlmnrg WNrmModScalarWNrmRing
11 nrgtrg ScalarWNrmRingScalarWTopRing
12 10 11 syl WNrmModScalarWTopRing
13 8 2 12 3jca WNrmModWTopMndWLModScalarWTopRing
14 eqid 𝑠𝑓W=𝑠𝑓W
15 eqid TopOpenW=TopOpenW
16 eqid TopOpenScalarW=TopOpenScalarW
17 9 14 15 16 nlmvscn WNrmMod𝑠𝑓WTopOpenScalarW×tTopOpenWCnTopOpenW
18 14 15 9 16 istlm WTopModWTopMndWLModScalarWTopRing𝑠𝑓WTopOpenScalarW×tTopOpenWCnTopOpenW
19 13 17 18 sylanbrc WNrmModWTopMod