Description: A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nlmtlm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmngp | |
|
2 | nlmlmod | |
|
3 | lmodabl | |
|
4 | 2 3 | syl | |
5 | ngptgp | |
|
6 | 1 4 5 | syl2anc | |
7 | tgptmd | |
|
8 | 6 7 | syl | |
9 | eqid | |
|
10 | 9 | nlmnrg | |
11 | nrgtrg | |
|
12 | 10 11 | syl | |
13 | 8 2 12 | 3jca | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 9 14 15 16 | nlmvscn | |
18 | 14 15 9 16 | istlm | |
19 | 13 17 18 | sylanbrc | |