Metamath Proof Explorer


Theorem nlmvscn

Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg and nlmtlm . (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nlmvscn.f F = Scalar W
nlmvscn.sf · ˙ = 𝑠𝑓 W
nlmvscn.j J = TopOpen W
nlmvscn.kf K = TopOpen F
Assertion nlmvscn W NrmMod · ˙ K × t J Cn J

Proof

Step Hyp Ref Expression
1 nlmvscn.f F = Scalar W
2 nlmvscn.sf · ˙ = 𝑠𝑓 W
3 nlmvscn.j J = TopOpen W
4 nlmvscn.kf K = TopOpen F
5 nlmlmod W NrmMod W LMod
6 eqid Base W = Base W
7 eqid Base F = Base F
8 6 1 7 2 lmodscaf W LMod · ˙ : Base F × Base W Base W
9 5 8 syl W NrmMod · ˙ : Base F × Base W Base W
10 eqid dist W = dist W
11 eqid dist F = dist F
12 eqid norm W = norm W
13 eqid norm F = norm F
14 eqid W = W
15 eqid r 2 norm F x + 1 = r 2 norm F x + 1
16 eqid r 2 norm W y + r 2 norm F x + 1 = r 2 norm W y + r 2 norm F x + 1
17 simpll W NrmMod x Base F y Base W r + W NrmMod
18 simpr W NrmMod x Base F y Base W r + r +
19 simplrl W NrmMod x Base F y Base W r + x Base F
20 simplrr W NrmMod x Base F y Base W r + y Base W
21 1 6 7 10 11 12 13 14 15 16 17 18 19 20 nlmvscnlem1 W NrmMod x Base F y Base W r + s + z Base F w Base W x dist F z < s y dist W w < s x W y dist W z W w < r
22 21 ralrimiva W NrmMod x Base F y Base W r + s + z Base F w Base W x dist F z < s y dist W w < s x W y dist W z W w < r
23 simplrl W NrmMod x Base F y Base W z Base F w Base W x Base F
24 simprl W NrmMod x Base F y Base W z Base F w Base W z Base F
25 23 24 ovresd W NrmMod x Base F y Base W z Base F w Base W x dist F Base F × Base F z = x dist F z
26 25 breq1d W NrmMod x Base F y Base W z Base F w Base W x dist F Base F × Base F z < s x dist F z < s
27 simplrr W NrmMod x Base F y Base W z Base F w Base W y Base W
28 simprr W NrmMod x Base F y Base W z Base F w Base W w Base W
29 27 28 ovresd W NrmMod x Base F y Base W z Base F w Base W y dist W Base W × Base W w = y dist W w
30 29 breq1d W NrmMod x Base F y Base W z Base F w Base W y dist W Base W × Base W w < s y dist W w < s
31 26 30 anbi12d W NrmMod x Base F y Base W z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x dist F z < s y dist W w < s
32 6 1 7 2 14 scafval x Base F y Base W x · ˙ y = x W y
33 32 ad2antlr W NrmMod x Base F y Base W z Base F w Base W x · ˙ y = x W y
34 6 1 7 2 14 scafval z Base F w Base W z · ˙ w = z W w
35 34 adantl W NrmMod x Base F y Base W z Base F w Base W z · ˙ w = z W w
36 33 35 oveq12d W NrmMod x Base F y Base W z Base F w Base W x · ˙ y dist W Base W × Base W z · ˙ w = x W y dist W Base W × Base W z W w
37 5 ad2antrr W NrmMod x Base F y Base W z Base F w Base W W LMod
38 6 1 14 7 lmodvscl W LMod x Base F y Base W x W y Base W
39 37 23 27 38 syl3anc W NrmMod x Base F y Base W z Base F w Base W x W y Base W
40 6 1 14 7 lmodvscl W LMod z Base F w Base W z W w Base W
41 37 24 28 40 syl3anc W NrmMod x Base F y Base W z Base F w Base W z W w Base W
42 39 41 ovresd W NrmMod x Base F y Base W z Base F w Base W x W y dist W Base W × Base W z W w = x W y dist W z W w
43 36 42 eqtrd W NrmMod x Base F y Base W z Base F w Base W x · ˙ y dist W Base W × Base W z · ˙ w = x W y dist W z W w
44 43 breq1d W NrmMod x Base F y Base W z Base F w Base W x · ˙ y dist W Base W × Base W z · ˙ w < r x W y dist W z W w < r
45 31 44 imbi12d W NrmMod x Base F y Base W z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r x dist F z < s y dist W w < s x W y dist W z W w < r
46 45 2ralbidva W NrmMod x Base F y Base W z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r z Base F w Base W x dist F z < s y dist W w < s x W y dist W z W w < r
47 46 rexbidv W NrmMod x Base F y Base W s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r s + z Base F w Base W x dist F z < s y dist W w < s x W y dist W z W w < r
48 47 ralbidv W NrmMod x Base F y Base W r + s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r r + s + z Base F w Base W x dist F z < s y dist W w < s x W y dist W z W w < r
49 22 48 mpbird W NrmMod x Base F y Base W r + s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r
50 49 ralrimivva W NrmMod x Base F y Base W r + s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r
51 1 nlmngp2 W NrmMod F NrmGrp
52 ngpms F NrmGrp F MetSp
53 51 52 syl W NrmMod F MetSp
54 msxms F MetSp F ∞MetSp
55 eqid dist F Base F × Base F = dist F Base F × Base F
56 7 55 xmsxmet F ∞MetSp dist F Base F × Base F ∞Met Base F
57 53 54 56 3syl W NrmMod dist F Base F × Base F ∞Met Base F
58 nlmngp W NrmMod W NrmGrp
59 ngpms W NrmGrp W MetSp
60 58 59 syl W NrmMod W MetSp
61 msxms W MetSp W ∞MetSp
62 eqid dist W Base W × Base W = dist W Base W × Base W
63 6 62 xmsxmet W ∞MetSp dist W Base W × Base W ∞Met Base W
64 60 61 63 3syl W NrmMod dist W Base W × Base W ∞Met Base W
65 eqid MetOpen dist F Base F × Base F = MetOpen dist F Base F × Base F
66 eqid MetOpen dist W Base W × Base W = MetOpen dist W Base W × Base W
67 65 66 66 txmetcn dist F Base F × Base F ∞Met Base F dist W Base W × Base W ∞Met Base W dist W Base W × Base W ∞Met Base W · ˙ MetOpen dist F Base F × Base F × t MetOpen dist W Base W × Base W Cn MetOpen dist W Base W × Base W · ˙ : Base F × Base W Base W x Base F y Base W r + s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r
68 57 64 64 67 syl3anc W NrmMod · ˙ MetOpen dist F Base F × Base F × t MetOpen dist W Base W × Base W Cn MetOpen dist W Base W × Base W · ˙ : Base F × Base W Base W x Base F y Base W r + s + z Base F w Base W x dist F Base F × Base F z < s y dist W Base W × Base W w < s x · ˙ y dist W Base W × Base W z · ˙ w < r
69 9 50 68 mpbir2and W NrmMod · ˙ MetOpen dist F Base F × Base F × t MetOpen dist W Base W × Base W Cn MetOpen dist W Base W × Base W
70 4 7 55 mstopn F MetSp K = MetOpen dist F Base F × Base F
71 53 70 syl W NrmMod K = MetOpen dist F Base F × Base F
72 3 6 62 mstopn W MetSp J = MetOpen dist W Base W × Base W
73 60 72 syl W NrmMod J = MetOpen dist W Base W × Base W
74 71 73 oveq12d W NrmMod K × t J = MetOpen dist F Base F × Base F × t MetOpen dist W Base W × Base W
75 74 73 oveq12d W NrmMod K × t J Cn J = MetOpen dist F Base F × Base F × t MetOpen dist W Base W × Base W Cn MetOpen dist W Base W × Base W
76 69 75 eleqtrrd W NrmMod · ˙ K × t J Cn J