Step |
Hyp |
Ref |
Expression |
1 |
|
nlmvscn.f |
|
2 |
|
nlmvscn.sf |
|
3 |
|
nlmvscn.j |
|
4 |
|
nlmvscn.kf |
|
5 |
|
nlmlmod |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 1 7 2
|
lmodscaf |
|
9 |
5 8
|
syl |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
simpll |
|
18 |
|
simpr |
|
19 |
|
simplrl |
|
20 |
|
simplrr |
|
21 |
1 6 7 10 11 12 13 14 15 16 17 18 19 20
|
nlmvscnlem1 |
|
22 |
21
|
ralrimiva |
|
23 |
|
simplrl |
|
24 |
|
simprl |
|
25 |
23 24
|
ovresd |
|
26 |
25
|
breq1d |
|
27 |
|
simplrr |
|
28 |
|
simprr |
|
29 |
27 28
|
ovresd |
|
30 |
29
|
breq1d |
|
31 |
26 30
|
anbi12d |
|
32 |
6 1 7 2 14
|
scafval |
|
33 |
32
|
ad2antlr |
|
34 |
6 1 7 2 14
|
scafval |
|
35 |
34
|
adantl |
|
36 |
33 35
|
oveq12d |
|
37 |
5
|
ad2antrr |
|
38 |
6 1 14 7
|
lmodvscl |
|
39 |
37 23 27 38
|
syl3anc |
|
40 |
6 1 14 7
|
lmodvscl |
|
41 |
37 24 28 40
|
syl3anc |
|
42 |
39 41
|
ovresd |
|
43 |
36 42
|
eqtrd |
|
44 |
43
|
breq1d |
|
45 |
31 44
|
imbi12d |
|
46 |
45
|
2ralbidva |
|
47 |
46
|
rexbidv |
|
48 |
47
|
ralbidv |
|
49 |
22 48
|
mpbird |
|
50 |
49
|
ralrimivva |
|
51 |
1
|
nlmngp2 |
|
52 |
|
ngpms |
|
53 |
51 52
|
syl |
|
54 |
|
msxms |
|
55 |
|
eqid |
|
56 |
7 55
|
xmsxmet |
|
57 |
53 54 56
|
3syl |
|
58 |
|
nlmngp |
|
59 |
|
ngpms |
|
60 |
58 59
|
syl |
|
61 |
|
msxms |
|
62 |
|
eqid |
|
63 |
6 62
|
xmsxmet |
|
64 |
60 61 63
|
3syl |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
65 66 66
|
txmetcn |
|
68 |
57 64 64 67
|
syl3anc |
|
69 |
9 50 68
|
mpbir2and |
|
70 |
4 7 55
|
mstopn |
|
71 |
53 70
|
syl |
|
72 |
3 6 62
|
mstopn |
|
73 |
60 72
|
syl |
|
74 |
71 73
|
oveq12d |
|
75 |
74 73
|
oveq12d |
|
76 |
69 75
|
eleqtrrd |
|