Metamath Proof Explorer


Theorem nlt1pi

Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion nlt1pi ¬ A < 𝑵 1 𝑜

Proof

Step Hyp Ref Expression
1 elni A 𝑵 A ω A
2 1 simprbi A 𝑵 A
3 noel ¬ A
4 1pi 1 𝑜 𝑵
5 ltpiord A 𝑵 1 𝑜 𝑵 A < 𝑵 1 𝑜 A 1 𝑜
6 4 5 mpan2 A 𝑵 A < 𝑵 1 𝑜 A 1 𝑜
7 df-1o 1 𝑜 = suc
8 7 eleq2i A 1 𝑜 A suc
9 elsucg A 𝑵 A suc A A =
10 8 9 syl5bb A 𝑵 A 1 𝑜 A A =
11 6 10 bitrd A 𝑵 A < 𝑵 1 𝑜 A A =
12 11 biimpa A 𝑵 A < 𝑵 1 𝑜 A A =
13 12 ord A 𝑵 A < 𝑵 1 𝑜 ¬ A A =
14 3 13 mpi A 𝑵 A < 𝑵 1 𝑜 A =
15 14 ex A 𝑵 A < 𝑵 1 𝑜 A =
16 15 necon3ad A 𝑵 A ¬ A < 𝑵 1 𝑜
17 2 16 mpd A 𝑵 ¬ A < 𝑵 1 𝑜
18 ltrelpi < 𝑵 𝑵 × 𝑵
19 18 brel A < 𝑵 1 𝑜 A 𝑵 1 𝑜 𝑵
20 19 simpld A < 𝑵 1 𝑜 A 𝑵
21 20 con3i ¬ A 𝑵 ¬ A < 𝑵 1 𝑜
22 17 21 pm2.61i ¬ A < 𝑵 1 𝑜