Metamath Proof Explorer


Theorem nltle2tri

Description: Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020)

Ref Expression
Assertion nltle2tri A * B * C * ¬ A < B B C C A

Proof

Step Hyp Ref Expression
1 xrltletr A * B * C * A < B B C A < C
2 id A < B B C A < C A < B B C A < C
3 2 impcom A < B B C A < B B C A < C A < C
4 xrltnle A * C * A < C ¬ C A
5 4 3adant2 A * B * C * A < C ¬ C A
6 5 biimpd A * B * C * A < C ¬ C A
7 6 imp A * B * C * A < C ¬ C A
8 7 olcd A * B * C * A < C ¬ A < B B C ¬ C A
9 8 expcom A < C A * B * C * ¬ A < B B C ¬ C A
10 3 9 syl A < B B C A < B B C A < C A * B * C * ¬ A < B B C ¬ C A
11 10 ex A < B B C A < B B C A < C A * B * C * ¬ A < B B C ¬ C A
12 11 com23 A < B B C A * B * C * A < B B C A < C ¬ A < B B C ¬ C A
13 12 impd A < B B C A * B * C * A < B B C A < C ¬ A < B B C ¬ C A
14 id ¬ A < B B C ¬ A < B B C
15 14 orcd ¬ A < B B C ¬ A < B B C ¬ C A
16 15 a1d ¬ A < B B C A * B * C * A < B B C A < C ¬ A < B B C ¬ C A
17 13 16 pm2.61i A * B * C * A < B B C A < C ¬ A < B B C ¬ C A
18 df-3an A < B B C C A A < B B C C A
19 18 notbii ¬ A < B B C C A ¬ A < B B C C A
20 ianor ¬ A < B B C C A ¬ A < B B C ¬ C A
21 19 20 bitri ¬ A < B B C C A ¬ A < B B C ¬ C A
22 17 21 sylibr A * B * C * A < B B C A < C ¬ A < B B C C A
23 22 ex A * B * C * A < B B C A < C ¬ A < B B C C A
24 1 23 mpd A * B * C * ¬ A < B B C C A