Metamath Proof Explorer


Theorem nltled

Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
nltled.1 φ ¬ B < A
Assertion nltled φ A B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 nltled.1 φ ¬ B < A
4 1 2 lenltd φ A B ¬ B < A
5 3 4 mpbird φ A B