Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
nltmnf
Next ⟩
pnfge
Metamath Proof Explorer
Ascii
Unicode
Theorem
nltmnf
Description:
No extended real is less than minus infinity.
(Contributed by
NM
, 15-Oct-2005)
Ref
Expression
Assertion
nltmnf
⊢
A
∈
ℝ
*
→
¬
A
<
−∞
Proof
Step
Hyp
Ref
Expression
1
mnfnre
⊢
−∞
∉
ℝ
2
1
neli
⊢
¬
−∞
∈
ℝ
3
2
intnan
⊢
¬
A
∈
ℝ
∧
−∞
∈
ℝ
4
3
intnanr
⊢
¬
A
∈
ℝ
∧
−∞
∈
ℝ
∧
A
<
ℝ
−∞
5
pnfnemnf
⊢
+∞
≠
−∞
6
5
nesymi
⊢
¬
−∞
=
+∞
7
6
intnan
⊢
¬
A
=
−∞
∧
−∞
=
+∞
8
4
7
pm3.2ni
⊢
¬
A
∈
ℝ
∧
−∞
∈
ℝ
∧
A
<
ℝ
−∞
∨
A
=
−∞
∧
−∞
=
+∞
9
6
intnan
⊢
¬
A
∈
ℝ
∧
−∞
=
+∞
10
2
intnan
⊢
¬
A
=
−∞
∧
−∞
∈
ℝ
11
9
10
pm3.2ni
⊢
¬
A
∈
ℝ
∧
−∞
=
+∞
∨
A
=
−∞
∧
−∞
∈
ℝ
12
8
11
pm3.2ni
⊢
¬
A
∈
ℝ
∧
−∞
∈
ℝ
∧
A
<
ℝ
−∞
∨
A
=
−∞
∧
−∞
=
+∞
∨
A
∈
ℝ
∧
−∞
=
+∞
∨
A
=
−∞
∧
−∞
∈
ℝ
13
mnfxr
⊢
−∞
∈
ℝ
*
14
ltxr
⊢
A
∈
ℝ
*
∧
−∞
∈
ℝ
*
→
A
<
−∞
↔
A
∈
ℝ
∧
−∞
∈
ℝ
∧
A
<
ℝ
−∞
∨
A
=
−∞
∧
−∞
=
+∞
∨
A
∈
ℝ
∧
−∞
=
+∞
∨
A
=
−∞
∧
−∞
∈
ℝ
15
13
14
mpan2
⊢
A
∈
ℝ
*
→
A
<
−∞
↔
A
∈
ℝ
∧
−∞
∈
ℝ
∧
A
<
ℝ
−∞
∨
A
=
−∞
∧
−∞
=
+∞
∨
A
∈
ℝ
∧
−∞
=
+∞
∨
A
=
−∞
∧
−∞
∈
ℝ
16
12
15
mtbiri
⊢
A
∈
ℝ
*
→
¬
A
<
−∞