Metamath Proof Explorer


Theorem nltmnf

Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion nltmnf A * ¬ A < −∞

Proof

Step Hyp Ref Expression
1 mnfnre −∞
2 1 neli ¬ −∞
3 2 intnan ¬ A −∞
4 3 intnanr ¬ A −∞ A < −∞
5 pnfnemnf +∞ −∞
6 5 nesymi ¬ −∞ = +∞
7 6 intnan ¬ A = −∞ −∞ = +∞
8 4 7 pm3.2ni ¬ A −∞ A < −∞ A = −∞ −∞ = +∞
9 6 intnan ¬ A −∞ = +∞
10 2 intnan ¬ A = −∞ −∞
11 9 10 pm3.2ni ¬ A −∞ = +∞ A = −∞ −∞
12 8 11 pm3.2ni ¬ A −∞ A < −∞ A = −∞ −∞ = +∞ A −∞ = +∞ A = −∞ −∞
13 mnfxr −∞ *
14 ltxr A * −∞ * A < −∞ A −∞ A < −∞ A = −∞ −∞ = +∞ A −∞ = +∞ A = −∞ −∞
15 13 14 mpan2 A * A < −∞ A −∞ A < −∞ A = −∞ −∞ = +∞ A −∞ = +∞ A = −∞ −∞
16 12 15 mtbiri A * ¬ A < −∞