Metamath Proof Explorer


Theorem nm0

Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nm0.n N = norm G
nm0.z 0 ˙ = 0 G
Assertion nm0 G NrmGrp N 0 ˙ = 0

Proof

Step Hyp Ref Expression
1 nm0.n N = norm G
2 nm0.z 0 ˙ = 0 G
3 eqid 0 ˙ = 0 ˙
4 ngpgrp G NrmGrp G Grp
5 eqid Base G = Base G
6 5 2 grpidcl G Grp 0 ˙ Base G
7 4 6 syl G NrmGrp 0 ˙ Base G
8 5 1 2 nmeq0 G NrmGrp 0 ˙ Base G N 0 ˙ = 0 0 ˙ = 0 ˙
9 7 8 mpdan G NrmGrp N 0 ˙ = 0 0 ˙ = 0 ˙
10 3 9 mpbiri G NrmGrp N 0 ˙ = 0