Metamath Proof Explorer


Theorem nmbdfnlb

Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion nmbdfnlb T LinFn norm fn T A T A norm fn T norm A

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinFn norm fn T T × 0 T A = if T LinFn norm fn T T × 0 A
2 1 fveq2d T = if T LinFn norm fn T T × 0 T A = if T LinFn norm fn T T × 0 A
3 fveq2 T = if T LinFn norm fn T T × 0 norm fn T = norm fn if T LinFn norm fn T T × 0
4 3 oveq1d T = if T LinFn norm fn T T × 0 norm fn T norm A = norm fn if T LinFn norm fn T T × 0 norm A
5 2 4 breq12d T = if T LinFn norm fn T T × 0 T A norm fn T norm A if T LinFn norm fn T T × 0 A norm fn if T LinFn norm fn T T × 0 norm A
6 5 imbi2d T = if T LinFn norm fn T T × 0 A T A norm fn T norm A A if T LinFn norm fn T T × 0 A norm fn if T LinFn norm fn T T × 0 norm A
7 eleq1 T = if T LinFn norm fn T T × 0 T LinFn if T LinFn norm fn T T × 0 LinFn
8 3 eleq1d T = if T LinFn norm fn T T × 0 norm fn T norm fn if T LinFn norm fn T T × 0
9 7 8 anbi12d T = if T LinFn norm fn T T × 0 T LinFn norm fn T if T LinFn norm fn T T × 0 LinFn norm fn if T LinFn norm fn T T × 0
10 eleq1 × 0 = if T LinFn norm fn T T × 0 × 0 LinFn if T LinFn norm fn T T × 0 LinFn
11 fveq2 × 0 = if T LinFn norm fn T T × 0 norm fn × 0 = norm fn if T LinFn norm fn T T × 0
12 11 eleq1d × 0 = if T LinFn norm fn T T × 0 norm fn × 0 norm fn if T LinFn norm fn T T × 0
13 10 12 anbi12d × 0 = if T LinFn norm fn T T × 0 × 0 LinFn norm fn × 0 if T LinFn norm fn T T × 0 LinFn norm fn if T LinFn norm fn T T × 0
14 0lnfn × 0 LinFn
15 nmfn0 norm fn × 0 = 0
16 0re 0
17 15 16 eqeltri norm fn × 0
18 14 17 pm3.2i × 0 LinFn norm fn × 0
19 9 13 18 elimhyp if T LinFn norm fn T T × 0 LinFn norm fn if T LinFn norm fn T T × 0
20 19 nmbdfnlbi A if T LinFn norm fn T T × 0 A norm fn if T LinFn norm fn T T × 0 norm A
21 6 20 dedth T LinFn norm fn T A T A norm fn T norm A
22 21 3impia T LinFn norm fn T A T A norm fn T norm A