Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdfnlb.1 |
|
2 |
|
fveq2 |
|
3 |
1
|
simpli |
|
4 |
3
|
lnfn0i |
|
5 |
2 4
|
eqtrdi |
|
6 |
5
|
abs00bd |
|
7 |
|
0le0 |
|
8 |
|
fveq2 |
|
9 |
|
norm0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
oveq2d |
|
12 |
1
|
simpri |
|
13 |
12
|
recni |
|
14 |
13
|
mul01i |
|
15 |
11 14
|
eqtr2di |
|
16 |
7 15
|
breqtrid |
|
17 |
6 16
|
eqbrtrd |
|
18 |
17
|
adantl |
|
19 |
3
|
lnfnfi |
|
20 |
19
|
ffvelrni |
|
21 |
20
|
abscld |
|
22 |
21
|
adantr |
|
23 |
22
|
recnd |
|
24 |
|
normcl |
|
25 |
24
|
adantr |
|
26 |
25
|
recnd |
|
27 |
|
normne0 |
|
28 |
27
|
biimpar |
|
29 |
23 26 28
|
divrec2d |
|
30 |
25 28
|
rereccld |
|
31 |
30
|
recnd |
|
32 |
|
simpl |
|
33 |
3
|
lnfnmuli |
|
34 |
31 32 33
|
syl2anc |
|
35 |
34
|
fveq2d |
|
36 |
20
|
adantr |
|
37 |
31 36
|
absmuld |
|
38 |
|
normgt0 |
|
39 |
38
|
biimpa |
|
40 |
25 39
|
recgt0d |
|
41 |
|
0re |
|
42 |
|
ltle |
|
43 |
41 42
|
mpan |
|
44 |
30 40 43
|
sylc |
|
45 |
30 44
|
absidd |
|
46 |
45
|
oveq1d |
|
47 |
35 37 46
|
3eqtrrd |
|
48 |
29 47
|
eqtrd |
|
49 |
|
hvmulcl |
|
50 |
31 32 49
|
syl2anc |
|
51 |
|
normcl |
|
52 |
50 51
|
syl |
|
53 |
|
norm1 |
|
54 |
|
eqle |
|
55 |
52 53 54
|
syl2anc |
|
56 |
|
nmfnlb |
|
57 |
19 56
|
mp3an1 |
|
58 |
50 55 57
|
syl2anc |
|
59 |
48 58
|
eqbrtrd |
|
60 |
12
|
a1i |
|
61 |
|
ledivmul2 |
|
62 |
22 60 25 39 61
|
syl112anc |
|
63 |
59 62
|
mpbid |
|
64 |
18 63
|
pm2.61dane |
|