Metamath Proof Explorer


Theorem nmbdfnlbi

Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmbdfnlb.1 T LinFn norm fn T
Assertion nmbdfnlbi A T A norm fn T norm A

Proof

Step Hyp Ref Expression
1 nmbdfnlb.1 T LinFn norm fn T
2 fveq2 A = 0 T A = T 0
3 1 simpli T LinFn
4 3 lnfn0i T 0 = 0
5 2 4 eqtrdi A = 0 T A = 0
6 5 abs00bd A = 0 T A = 0
7 0le0 0 0
8 fveq2 A = 0 norm A = norm 0
9 norm0 norm 0 = 0
10 8 9 eqtrdi A = 0 norm A = 0
11 10 oveq2d A = 0 norm fn T norm A = norm fn T 0
12 1 simpri norm fn T
13 12 recni norm fn T
14 13 mul01i norm fn T 0 = 0
15 11 14 eqtr2di A = 0 0 = norm fn T norm A
16 7 15 breqtrid A = 0 0 norm fn T norm A
17 6 16 eqbrtrd A = 0 T A norm fn T norm A
18 17 adantl A A = 0 T A norm fn T norm A
19 3 lnfnfi T :
20 19 ffvelrni A T A
21 20 abscld A T A
22 21 adantr A A 0 T A
23 22 recnd A A 0 T A
24 normcl A norm A
25 24 adantr A A 0 norm A
26 25 recnd A A 0 norm A
27 normne0 A norm A 0 A 0
28 27 biimpar A A 0 norm A 0
29 23 26 28 divrec2d A A 0 T A norm A = 1 norm A T A
30 25 28 rereccld A A 0 1 norm A
31 30 recnd A A 0 1 norm A
32 simpl A A 0 A
33 3 lnfnmuli 1 norm A A T 1 norm A A = 1 norm A T A
34 31 32 33 syl2anc A A 0 T 1 norm A A = 1 norm A T A
35 34 fveq2d A A 0 T 1 norm A A = 1 norm A T A
36 20 adantr A A 0 T A
37 31 36 absmuld A A 0 1 norm A T A = 1 norm A T A
38 normgt0 A A 0 0 < norm A
39 38 biimpa A A 0 0 < norm A
40 25 39 recgt0d A A 0 0 < 1 norm A
41 0re 0
42 ltle 0 1 norm A 0 < 1 norm A 0 1 norm A
43 41 42 mpan 1 norm A 0 < 1 norm A 0 1 norm A
44 30 40 43 sylc A A 0 0 1 norm A
45 30 44 absidd A A 0 1 norm A = 1 norm A
46 45 oveq1d A A 0 1 norm A T A = 1 norm A T A
47 35 37 46 3eqtrrd A A 0 1 norm A T A = T 1 norm A A
48 29 47 eqtrd A A 0 T A norm A = T 1 norm A A
49 hvmulcl 1 norm A A 1 norm A A
50 31 32 49 syl2anc A A 0 1 norm A A
51 normcl 1 norm A A norm 1 norm A A
52 50 51 syl A A 0 norm 1 norm A A
53 norm1 A A 0 norm 1 norm A A = 1
54 eqle norm 1 norm A A norm 1 norm A A = 1 norm 1 norm A A 1
55 52 53 54 syl2anc A A 0 norm 1 norm A A 1
56 nmfnlb T : 1 norm A A norm 1 norm A A 1 T 1 norm A A norm fn T
57 19 56 mp3an1 1 norm A A norm 1 norm A A 1 T 1 norm A A norm fn T
58 50 55 57 syl2anc A A 0 T 1 norm A A norm fn T
59 48 58 eqbrtrd A A 0 T A norm A norm fn T
60 12 a1i A A 0 norm fn T
61 ledivmul2 T A norm fn T norm A 0 < norm A T A norm A norm fn T T A norm fn T norm A
62 22 60 25 39 61 syl112anc A A 0 T A norm A norm fn T T A norm fn T norm A
63 59 62 mpbid A A 0 T A norm fn T norm A
64 18 63 pm2.61dane A T A norm fn T norm A