Metamath Proof Explorer


Theorem nmbdoplb

Description: A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmbdoplb T BndLinOp A norm T A norm op T norm A

Proof

Step Hyp Ref Expression
1 fveq1 T = if T BndLinOp T 0 hop T A = if T BndLinOp T 0 hop A
2 1 fveq2d T = if T BndLinOp T 0 hop norm T A = norm if T BndLinOp T 0 hop A
3 fveq2 T = if T BndLinOp T 0 hop norm op T = norm op if T BndLinOp T 0 hop
4 3 oveq1d T = if T BndLinOp T 0 hop norm op T norm A = norm op if T BndLinOp T 0 hop norm A
5 2 4 breq12d T = if T BndLinOp T 0 hop norm T A norm op T norm A norm if T BndLinOp T 0 hop A norm op if T BndLinOp T 0 hop norm A
6 5 imbi2d T = if T BndLinOp T 0 hop A norm T A norm op T norm A A norm if T BndLinOp T 0 hop A norm op if T BndLinOp T 0 hop norm A
7 0bdop 0 hop BndLinOp
8 7 elimel if T BndLinOp T 0 hop BndLinOp
9 8 nmbdoplbi A norm if T BndLinOp T 0 hop A norm op if T BndLinOp T 0 hop norm A
10 6 9 dedth T BndLinOp A norm T A norm op T norm A
11 10 imp T BndLinOp A norm T A norm op T norm A