Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdoplb.1 |
|
2 |
|
fveq2 |
|
3 |
2
|
fveq2d |
|
4 |
|
fveq2 |
|
5 |
4
|
oveq2d |
|
6 |
3 5
|
breq12d |
|
7 |
|
bdopln |
|
8 |
1 7
|
ax-mp |
|
9 |
8
|
lnopfi |
|
10 |
9
|
ffvelrni |
|
11 |
|
normcl |
|
12 |
10 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
13
|
recnd |
|
15 |
|
normcl |
|
16 |
15
|
adantr |
|
17 |
16
|
recnd |
|
18 |
|
normne0 |
|
19 |
18
|
biimpar |
|
20 |
14 17 19
|
divrec2d |
|
21 |
16 19
|
rereccld |
|
22 |
21
|
recnd |
|
23 |
|
simpl |
|
24 |
8
|
lnopmuli |
|
25 |
22 23 24
|
syl2anc |
|
26 |
25
|
fveq2d |
|
27 |
10
|
adantr |
|
28 |
|
norm-iii |
|
29 |
22 27 28
|
syl2anc |
|
30 |
|
normgt0 |
|
31 |
30
|
biimpa |
|
32 |
16 31
|
recgt0d |
|
33 |
|
0re |
|
34 |
|
ltle |
|
35 |
33 34
|
mpan |
|
36 |
21 32 35
|
sylc |
|
37 |
21 36
|
absidd |
|
38 |
37
|
oveq1d |
|
39 |
26 29 38
|
3eqtrrd |
|
40 |
20 39
|
eqtrd |
|
41 |
|
hvmulcl |
|
42 |
22 23 41
|
syl2anc |
|
43 |
|
normcl |
|
44 |
42 43
|
syl |
|
45 |
|
norm1 |
|
46 |
|
eqle |
|
47 |
44 45 46
|
syl2anc |
|
48 |
|
nmoplb |
|
49 |
9 48
|
mp3an1 |
|
50 |
42 47 49
|
syl2anc |
|
51 |
40 50
|
eqbrtrd |
|
52 |
|
nmopre |
|
53 |
1 52
|
ax-mp |
|
54 |
53
|
a1i |
|
55 |
|
ledivmul2 |
|
56 |
13 54 16 31 55
|
syl112anc |
|
57 |
51 56
|
mpbid |
|
58 |
|
0le0 |
|
59 |
8
|
lnop0i |
|
60 |
59
|
fveq2i |
|
61 |
|
norm0 |
|
62 |
60 61
|
eqtri |
|
63 |
61
|
oveq2i |
|
64 |
53
|
recni |
|
65 |
64
|
mul01i |
|
66 |
63 65
|
eqtri |
|
67 |
58 62 66
|
3brtr4i |
|
68 |
67
|
a1i |
|
69 |
6 57 68
|
pm2.61ne |
|