Metamath Proof Explorer


Theorem nmbdoplbi

Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmbdoplb.1 T BndLinOp
Assertion nmbdoplbi A norm T A norm op T norm A

Proof

Step Hyp Ref Expression
1 nmbdoplb.1 T BndLinOp
2 fveq2 A = 0 T A = T 0
3 2 fveq2d A = 0 norm T A = norm T 0
4 fveq2 A = 0 norm A = norm 0
5 4 oveq2d A = 0 norm op T norm A = norm op T norm 0
6 3 5 breq12d A = 0 norm T A norm op T norm A norm T 0 norm op T norm 0
7 bdopln T BndLinOp T LinOp
8 1 7 ax-mp T LinOp
9 8 lnopfi T :
10 9 ffvelrni A T A
11 normcl T A norm T A
12 10 11 syl A norm T A
13 12 adantr A A 0 norm T A
14 13 recnd A A 0 norm T A
15 normcl A norm A
16 15 adantr A A 0 norm A
17 16 recnd A A 0 norm A
18 normne0 A norm A 0 A 0
19 18 biimpar A A 0 norm A 0
20 14 17 19 divrec2d A A 0 norm T A norm A = 1 norm A norm T A
21 16 19 rereccld A A 0 1 norm A
22 21 recnd A A 0 1 norm A
23 simpl A A 0 A
24 8 lnopmuli 1 norm A A T 1 norm A A = 1 norm A T A
25 22 23 24 syl2anc A A 0 T 1 norm A A = 1 norm A T A
26 25 fveq2d A A 0 norm T 1 norm A A = norm 1 norm A T A
27 10 adantr A A 0 T A
28 norm-iii 1 norm A T A norm 1 norm A T A = 1 norm A norm T A
29 22 27 28 syl2anc A A 0 norm 1 norm A T A = 1 norm A norm T A
30 normgt0 A A 0 0 < norm A
31 30 biimpa A A 0 0 < norm A
32 16 31 recgt0d A A 0 0 < 1 norm A
33 0re 0
34 ltle 0 1 norm A 0 < 1 norm A 0 1 norm A
35 33 34 mpan 1 norm A 0 < 1 norm A 0 1 norm A
36 21 32 35 sylc A A 0 0 1 norm A
37 21 36 absidd A A 0 1 norm A = 1 norm A
38 37 oveq1d A A 0 1 norm A norm T A = 1 norm A norm T A
39 26 29 38 3eqtrrd A A 0 1 norm A norm T A = norm T 1 norm A A
40 20 39 eqtrd A A 0 norm T A norm A = norm T 1 norm A A
41 hvmulcl 1 norm A A 1 norm A A
42 22 23 41 syl2anc A A 0 1 norm A A
43 normcl 1 norm A A norm 1 norm A A
44 42 43 syl A A 0 norm 1 norm A A
45 norm1 A A 0 norm 1 norm A A = 1
46 eqle norm 1 norm A A norm 1 norm A A = 1 norm 1 norm A A 1
47 44 45 46 syl2anc A A 0 norm 1 norm A A 1
48 nmoplb T : 1 norm A A norm 1 norm A A 1 norm T 1 norm A A norm op T
49 9 48 mp3an1 1 norm A A norm 1 norm A A 1 norm T 1 norm A A norm op T
50 42 47 49 syl2anc A A 0 norm T 1 norm A A norm op T
51 40 50 eqbrtrd A A 0 norm T A norm A norm op T
52 nmopre T BndLinOp norm op T
53 1 52 ax-mp norm op T
54 53 a1i A A 0 norm op T
55 ledivmul2 norm T A norm op T norm A 0 < norm A norm T A norm A norm op T norm T A norm op T norm A
56 13 54 16 31 55 syl112anc A A 0 norm T A norm A norm op T norm T A norm op T norm A
57 51 56 mpbid A A 0 norm T A norm op T norm A
58 0le0 0 0
59 8 lnop0i T 0 = 0
60 59 fveq2i norm T 0 = norm 0
61 norm0 norm 0 = 0
62 60 61 eqtri norm T 0 = 0
63 61 oveq2i norm op T norm 0 = norm op T 0
64 53 recni norm op T
65 64 mul01i norm op T 0 = 0
66 63 65 eqtri norm op T norm 0 = 0
67 58 62 66 3brtr4i norm T 0 norm op T norm 0
68 67 a1i A norm T 0 norm op T norm 0
69 6 57 68 pm2.61ne A norm T A norm op T norm A