Metamath Proof Explorer


Theorem nmblolbii

Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblolbi.1 X = BaseSet U
nmblolbi.4 L = norm CV U
nmblolbi.5 M = norm CV W
nmblolbi.6 N = U normOp OLD W
nmblolbi.7 B = U BLnOp W
nmblolbi.u U NrmCVec
nmblolbi.w W NrmCVec
nmblolbii.b T B
Assertion nmblolbii A X M T A N T L A

Proof

Step Hyp Ref Expression
1 nmblolbi.1 X = BaseSet U
2 nmblolbi.4 L = norm CV U
3 nmblolbi.5 M = norm CV W
4 nmblolbi.6 N = U normOp OLD W
5 nmblolbi.7 B = U BLnOp W
6 nmblolbi.u U NrmCVec
7 nmblolbi.w W NrmCVec
8 nmblolbii.b T B
9 fveq2 A = 0 vec U T A = T 0 vec U
10 9 fveq2d A = 0 vec U M T A = M T 0 vec U
11 fveq2 A = 0 vec U L A = L 0 vec U
12 11 oveq2d A = 0 vec U N T L A = N T L 0 vec U
13 10 12 breq12d A = 0 vec U M T A N T L A M T 0 vec U N T L 0 vec U
14 1 2 nvcl U NrmCVec A X L A
15 6 14 mpan A X L A
16 15 adantr A X A 0 vec U L A
17 eqid 0 vec U = 0 vec U
18 1 17 2 nvz U NrmCVec A X L A = 0 A = 0 vec U
19 6 18 mpan A X L A = 0 A = 0 vec U
20 19 necon3bid A X L A 0 A 0 vec U
21 20 biimpar A X A 0 vec U L A 0
22 16 21 rereccld A X A 0 vec U 1 L A
23 1 17 2 nvgt0 U NrmCVec A X A 0 vec U 0 < L A
24 6 23 mpan A X A 0 vec U 0 < L A
25 24 biimpa A X A 0 vec U 0 < L A
26 16 25 recgt0d A X A 0 vec U 0 < 1 L A
27 0re 0
28 ltle 0 1 L A 0 < 1 L A 0 1 L A
29 27 22 28 sylancr A X A 0 vec U 0 < 1 L A 0 1 L A
30 26 29 mpd A X A 0 vec U 0 1 L A
31 eqid BaseSet W = BaseSet W
32 1 31 5 blof U NrmCVec W NrmCVec T B T : X BaseSet W
33 6 7 8 32 mp3an T : X BaseSet W
34 33 ffvelrni A X T A BaseSet W
35 34 adantr A X A 0 vec U T A BaseSet W
36 eqid 𝑠OLD W = 𝑠OLD W
37 31 36 3 nvsge0 W NrmCVec 1 L A 0 1 L A T A BaseSet W M 1 L A 𝑠OLD W T A = 1 L A M T A
38 7 37 mp3an1 1 L A 0 1 L A T A BaseSet W M 1 L A 𝑠OLD W T A = 1 L A M T A
39 22 30 35 38 syl21anc A X A 0 vec U M 1 L A 𝑠OLD W T A = 1 L A M T A
40 22 recnd A X A 0 vec U 1 L A
41 simpl A X A 0 vec U A X
42 eqid U LnOp W = U LnOp W
43 42 5 bloln U NrmCVec W NrmCVec T B T U LnOp W
44 6 7 8 43 mp3an T U LnOp W
45 6 7 44 3pm3.2i U NrmCVec W NrmCVec T U LnOp W
46 eqid 𝑠OLD U = 𝑠OLD U
47 1 46 36 42 lnomul U NrmCVec W NrmCVec T U LnOp W 1 L A A X T 1 L A 𝑠OLD U A = 1 L A 𝑠OLD W T A
48 45 47 mpan 1 L A A X T 1 L A 𝑠OLD U A = 1 L A 𝑠OLD W T A
49 40 41 48 syl2anc A X A 0 vec U T 1 L A 𝑠OLD U A = 1 L A 𝑠OLD W T A
50 49 fveq2d A X A 0 vec U M T 1 L A 𝑠OLD U A = M 1 L A 𝑠OLD W T A
51 31 3 nvcl W NrmCVec T A BaseSet W M T A
52 7 34 51 sylancr A X M T A
53 52 adantr A X A 0 vec U M T A
54 53 recnd A X A 0 vec U M T A
55 16 recnd A X A 0 vec U L A
56 54 55 21 divrec2d A X A 0 vec U M T A L A = 1 L A M T A
57 39 50 56 3eqtr4rd A X A 0 vec U M T A L A = M T 1 L A 𝑠OLD U A
58 1 46 nvscl U NrmCVec 1 L A A X 1 L A 𝑠OLD U A X
59 6 58 mp3an1 1 L A A X 1 L A 𝑠OLD U A X
60 59 ancoms A X 1 L A 1 L A 𝑠OLD U A X
61 40 60 syldan A X A 0 vec U 1 L A 𝑠OLD U A X
62 1 2 nvcl U NrmCVec 1 L A 𝑠OLD U A X L 1 L A 𝑠OLD U A
63 6 61 62 sylancr A X A 0 vec U L 1 L A 𝑠OLD U A
64 1 46 17 2 nv1 U NrmCVec A X A 0 vec U L 1 L A 𝑠OLD U A = 1
65 6 64 mp3an1 A X A 0 vec U L 1 L A 𝑠OLD U A = 1
66 eqle L 1 L A 𝑠OLD U A L 1 L A 𝑠OLD U A = 1 L 1 L A 𝑠OLD U A 1
67 63 65 66 syl2anc A X A 0 vec U L 1 L A 𝑠OLD U A 1
68 6 7 33 3pm3.2i U NrmCVec W NrmCVec T : X BaseSet W
69 1 31 2 3 4 nmoolb U NrmCVec W NrmCVec T : X BaseSet W 1 L A 𝑠OLD U A X L 1 L A 𝑠OLD U A 1 M T 1 L A 𝑠OLD U A N T
70 68 69 mpan 1 L A 𝑠OLD U A X L 1 L A 𝑠OLD U A 1 M T 1 L A 𝑠OLD U A N T
71 61 67 70 syl2anc A X A 0 vec U M T 1 L A 𝑠OLD U A N T
72 57 71 eqbrtrd A X A 0 vec U M T A L A N T
73 1 31 4 5 nmblore U NrmCVec W NrmCVec T B N T
74 6 7 8 73 mp3an N T
75 74 a1i A X A 0 vec U N T
76 ledivmul2 M T A N T L A 0 < L A M T A L A N T M T A N T L A
77 53 75 16 25 76 syl112anc A X A 0 vec U M T A L A N T M T A N T L A
78 72 77 mpbid A X A 0 vec U M T A N T L A
79 0le0 0 0
80 eqid 0 vec W = 0 vec W
81 1 31 17 80 42 lno0 U NrmCVec W NrmCVec T U LnOp W T 0 vec U = 0 vec W
82 6 7 44 81 mp3an T 0 vec U = 0 vec W
83 82 fveq2i M T 0 vec U = M 0 vec W
84 80 3 nvz0 W NrmCVec M 0 vec W = 0
85 7 84 ax-mp M 0 vec W = 0
86 83 85 eqtri M T 0 vec U = 0
87 17 2 nvz0 U NrmCVec L 0 vec U = 0
88 6 87 ax-mp L 0 vec U = 0
89 88 oveq2i N T L 0 vec U = N T 0
90 74 recni N T
91 90 mul01i N T 0 = 0
92 89 91 eqtri N T L 0 vec U = 0
93 79 86 92 3brtr4i M T 0 vec U N T L 0 vec U
94 93 a1i A X M T 0 vec U N T L 0 vec U
95 13 78 94 pm2.61ne A X M T A N T L A