Metamath Proof Explorer


Theorem nmblore

Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblore.1 X = BaseSet U
nmblore.2 Y = BaseSet W
nmblore.3 N = U normOp OLD W
nmblore.5 B = U BLnOp W
Assertion nmblore U NrmCVec W NrmCVec T B N T

Proof

Step Hyp Ref Expression
1 nmblore.1 X = BaseSet U
2 nmblore.2 Y = BaseSet W
3 nmblore.3 N = U normOp OLD W
4 nmblore.5 B = U BLnOp W
5 1 2 4 blof U NrmCVec W NrmCVec T B T : X Y
6 1 2 3 nmogtmnf U NrmCVec W NrmCVec T : X Y −∞ < N T
7 5 6 syld3an3 U NrmCVec W NrmCVec T B −∞ < N T
8 eqid U LnOp W = U LnOp W
9 3 8 4 isblo U NrmCVec W NrmCVec T B T U LnOp W N T < +∞
10 9 simplbda U NrmCVec W NrmCVec T B N T < +∞
11 10 3impa U NrmCVec W NrmCVec T B N T < +∞
12 1 2 3 nmoxr U NrmCVec W NrmCVec T : X Y N T *
13 5 12 syld3an3 U NrmCVec W NrmCVec T B N T *
14 xrrebnd N T * N T −∞ < N T N T < +∞
15 13 14 syl U NrmCVec W NrmCVec T B N T −∞ < N T N T < +∞
16 7 11 15 mpbir2and U NrmCVec W NrmCVec T B N T