Metamath Proof Explorer


Theorem nmcfnex

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcfnex T LinFn T ContFn norm fn T

Proof

Step Hyp Ref Expression
1 elin T LinFn ContFn T LinFn T ContFn
2 fveq2 T = if T LinFn ContFn T × 0 norm fn T = norm fn if T LinFn ContFn T × 0
3 2 eleq1d T = if T LinFn ContFn T × 0 norm fn T norm fn if T LinFn ContFn T × 0
4 0lnfn × 0 LinFn
5 0cnfn × 0 ContFn
6 elin × 0 LinFn ContFn × 0 LinFn × 0 ContFn
7 4 5 6 mpbir2an × 0 LinFn ContFn
8 7 elimel if T LinFn ContFn T × 0 LinFn ContFn
9 elin if T LinFn ContFn T × 0 LinFn ContFn if T LinFn ContFn T × 0 LinFn if T LinFn ContFn T × 0 ContFn
10 8 9 mpbi if T LinFn ContFn T × 0 LinFn if T LinFn ContFn T × 0 ContFn
11 10 simpli if T LinFn ContFn T × 0 LinFn
12 10 simpri if T LinFn ContFn T × 0 ContFn
13 11 12 nmcfnexi norm fn if T LinFn ContFn T × 0
14 3 13 dedth T LinFn ContFn norm fn T
15 1 14 sylbir T LinFn T ContFn norm fn T