| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcfnex.1 |
|
| 2 |
|
nmcfnex.2 |
|
| 3 |
|
fveq2 |
|
| 4 |
1
|
lnfn0i |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
5
|
abs00bd |
|
| 7 |
|
0le0 |
|
| 8 |
|
fveq2 |
|
| 9 |
|
norm0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
oveq2d |
|
| 12 |
1 2
|
nmcfnexi |
|
| 13 |
12
|
recni |
|
| 14 |
13
|
mul01i |
|
| 15 |
11 14
|
eqtr2di |
|
| 16 |
7 15
|
breqtrid |
|
| 17 |
6 16
|
eqbrtrd |
|
| 18 |
17
|
adantl |
|
| 19 |
1
|
lnfnfi |
|
| 20 |
19
|
ffvelcdmi |
|
| 21 |
20
|
abscld |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
recnd |
|
| 24 |
|
normcl |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
recnd |
|
| 27 |
|
norm-i |
|
| 28 |
27
|
notbid |
|
| 29 |
28
|
biimpar |
|
| 30 |
29
|
neqned |
|
| 31 |
23 26 30
|
divrec2d |
|
| 32 |
25 30
|
rereccld |
|
| 33 |
32
|
recnd |
|
| 34 |
|
simpl |
|
| 35 |
1
|
lnfnmuli |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
36
|
fveq2d |
|
| 38 |
20
|
adantr |
|
| 39 |
33 38
|
absmuld |
|
| 40 |
|
df-ne |
|
| 41 |
|
normgt0 |
|
| 42 |
40 41
|
bitr3id |
|
| 43 |
42
|
biimpa |
|
| 44 |
25 43
|
recgt0d |
|
| 45 |
|
0re |
|
| 46 |
|
ltle |
|
| 47 |
45 46
|
mpan |
|
| 48 |
32 44 47
|
sylc |
|
| 49 |
32 48
|
absidd |
|
| 50 |
49
|
oveq1d |
|
| 51 |
37 39 50
|
3eqtrrd |
|
| 52 |
31 51
|
eqtrd |
|
| 53 |
|
hvmulcl |
|
| 54 |
33 34 53
|
syl2anc |
|
| 55 |
|
normcl |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
norm1 |
|
| 58 |
40 57
|
sylan2br |
|
| 59 |
|
eqle |
|
| 60 |
56 58 59
|
syl2anc |
|
| 61 |
|
nmfnlb |
|
| 62 |
19 61
|
mp3an1 |
|
| 63 |
54 60 62
|
syl2anc |
|
| 64 |
52 63
|
eqbrtrd |
|
| 65 |
12
|
a1i |
|
| 66 |
|
ledivmul2 |
|
| 67 |
22 65 25 43 66
|
syl112anc |
|
| 68 |
64 67
|
mpbid |
|
| 69 |
18 68
|
pm2.61dan |
|