Metamath Proof Explorer


Theorem nmcnc

Description: The norm of a normed complex vector space is a continuous function to CC . (For RR , see nmcvcn .) (Contributed by NM, 12-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmcnc.1 N = norm CV U
nmcnc.2 C = IndMet U
nmcnc.j J = MetOpen C
nmcnc.k K = TopOpen fld
Assertion nmcnc U NrmCVec N J Cn K

Proof

Step Hyp Ref Expression
1 nmcnc.1 N = norm CV U
2 nmcnc.2 C = IndMet U
3 nmcnc.j J = MetOpen C
4 nmcnc.k K = TopOpen fld
5 4 cnfldtop K Top
6 cnrest2r K Top J Cn K 𝑡 J Cn K
7 5 6 ax-mp J Cn K 𝑡 J Cn K
8 4 tgioo2 topGen ran . = K 𝑡
9 8 eqcomi K 𝑡 = topGen ran .
10 1 2 3 9 nmcvcn U NrmCVec N J Cn K 𝑡
11 7 10 sselid U NrmCVec N J Cn K