Metamath Proof Explorer


Theorem nmcopex

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcopex T LinOp T ContOp norm op T

Proof

Step Hyp Ref Expression
1 elin T LinOp ContOp T LinOp T ContOp
2 fveq2 T = if T LinOp ContOp T I norm op T = norm op if T LinOp ContOp T I
3 2 eleq1d T = if T LinOp ContOp T I norm op T norm op if T LinOp ContOp T I
4 idlnop I LinOp
5 idcnop I ContOp
6 elin I LinOp ContOp I LinOp I ContOp
7 4 5 6 mpbir2an I LinOp ContOp
8 7 elimel if T LinOp ContOp T I LinOp ContOp
9 elin if T LinOp ContOp T I LinOp ContOp if T LinOp ContOp T I LinOp if T LinOp ContOp T I ContOp
10 8 9 mpbi if T LinOp ContOp T I LinOp if T LinOp ContOp T I ContOp
11 10 simpli if T LinOp ContOp T I LinOp
12 10 simpri if T LinOp ContOp T I ContOp
13 11 12 nmcopexi norm op if T LinOp ContOp T I
14 3 13 dedth T LinOp ContOp norm op T
15 1 14 sylbir T LinOp T ContOp norm op T