Step |
Hyp |
Ref |
Expression |
1 |
|
nmcopex.1 |
|
2 |
|
nmcopex.2 |
|
3 |
|
0le0 |
|
4 |
3
|
a1i |
|
5 |
|
fveq2 |
|
6 |
1
|
lnop0i |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
fveq2d |
|
9 |
|
norm0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
|
fveq2 |
|
12 |
11 9
|
eqtrdi |
|
13 |
12
|
oveq2d |
|
14 |
1 2
|
nmcopexi |
|
15 |
14
|
recni |
|
16 |
15
|
mul01i |
|
17 |
13 16
|
eqtrdi |
|
18 |
4 10 17
|
3brtr4d |
|
19 |
18
|
adantl |
|
20 |
|
normcl |
|
21 |
20
|
adantr |
|
22 |
|
normne0 |
|
23 |
22
|
biimpar |
|
24 |
21 23
|
rereccld |
|
25 |
|
normgt0 |
|
26 |
25
|
biimpa |
|
27 |
21 26
|
recgt0d |
|
28 |
|
0re |
|
29 |
|
ltle |
|
30 |
28 29
|
mpan |
|
31 |
24 27 30
|
sylc |
|
32 |
24 31
|
absidd |
|
33 |
32
|
oveq1d |
|
34 |
24
|
recnd |
|
35 |
|
simpl |
|
36 |
1
|
lnopmuli |
|
37 |
34 35 36
|
syl2anc |
|
38 |
37
|
fveq2d |
|
39 |
1
|
lnopfi |
|
40 |
39
|
ffvelrni |
|
41 |
40
|
adantr |
|
42 |
|
norm-iii |
|
43 |
34 41 42
|
syl2anc |
|
44 |
38 43
|
eqtrd |
|
45 |
|
normcl |
|
46 |
40 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
47
|
recnd |
|
49 |
21
|
recnd |
|
50 |
48 49 23
|
divrec2d |
|
51 |
33 44 50
|
3eqtr4rd |
|
52 |
|
hvmulcl |
|
53 |
34 35 52
|
syl2anc |
|
54 |
|
normcl |
|
55 |
53 54
|
syl |
|
56 |
|
norm1 |
|
57 |
|
eqle |
|
58 |
55 56 57
|
syl2anc |
|
59 |
|
nmoplb |
|
60 |
39 59
|
mp3an1 |
|
61 |
53 58 60
|
syl2anc |
|
62 |
51 61
|
eqbrtrd |
|
63 |
14
|
a1i |
|
64 |
|
ledivmul2 |
|
65 |
47 63 21 26 64
|
syl112anc |
|
66 |
62 65
|
mpbid |
|
67 |
19 66
|
pm2.61dane |
|