| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcopex.1 |
|
| 2 |
|
nmcopex.2 |
|
| 3 |
|
0le0 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
fveq2 |
|
| 6 |
1
|
lnop0i |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
fveq2d |
|
| 9 |
|
norm0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
|
fveq2 |
|
| 12 |
11 9
|
eqtrdi |
|
| 13 |
12
|
oveq2d |
|
| 14 |
1 2
|
nmcopexi |
|
| 15 |
14
|
recni |
|
| 16 |
15
|
mul01i |
|
| 17 |
13 16
|
eqtrdi |
|
| 18 |
4 10 17
|
3brtr4d |
|
| 19 |
18
|
adantl |
|
| 20 |
|
normcl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
normne0 |
|
| 23 |
22
|
biimpar |
|
| 24 |
21 23
|
rereccld |
|
| 25 |
|
normgt0 |
|
| 26 |
25
|
biimpa |
|
| 27 |
21 26
|
recgt0d |
|
| 28 |
|
0re |
|
| 29 |
|
ltle |
|
| 30 |
28 29
|
mpan |
|
| 31 |
24 27 30
|
sylc |
|
| 32 |
24 31
|
absidd |
|
| 33 |
32
|
oveq1d |
|
| 34 |
24
|
recnd |
|
| 35 |
|
simpl |
|
| 36 |
1
|
lnopmuli |
|
| 37 |
34 35 36
|
syl2anc |
|
| 38 |
37
|
fveq2d |
|
| 39 |
1
|
lnopfi |
|
| 40 |
39
|
ffvelcdmi |
|
| 41 |
40
|
adantr |
|
| 42 |
|
norm-iii |
|
| 43 |
34 41 42
|
syl2anc |
|
| 44 |
38 43
|
eqtrd |
|
| 45 |
|
normcl |
|
| 46 |
40 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
recnd |
|
| 49 |
21
|
recnd |
|
| 50 |
48 49 23
|
divrec2d |
|
| 51 |
33 44 50
|
3eqtr4rd |
|
| 52 |
|
hvmulcl |
|
| 53 |
34 35 52
|
syl2anc |
|
| 54 |
|
normcl |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
norm1 |
|
| 57 |
|
eqle |
|
| 58 |
55 56 57
|
syl2anc |
|
| 59 |
|
nmoplb |
|
| 60 |
39 59
|
mp3an1 |
|
| 61 |
53 58 60
|
syl2anc |
|
| 62 |
51 61
|
eqbrtrd |
|
| 63 |
14
|
a1i |
|
| 64 |
|
ledivmul2 |
|
| 65 |
47 63 21 26 64
|
syl112anc |
|
| 66 |
62 65
|
mpbid |
|
| 67 |
19 66
|
pm2.61dane |
|