Metamath Proof Explorer


Theorem nmf2

Description: The norm on a metric group is a function from the base set into the reals. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmf2.n N = norm W
nmf2.x X = Base W
nmf2.d D = dist W
nmf2.e E = D X × X
Assertion nmf2 W Grp E Met X N : X

Proof

Step Hyp Ref Expression
1 nmf2.n N = norm W
2 nmf2.x X = Base W
3 nmf2.d D = dist W
4 nmf2.e E = D X × X
5 eqid 0 W = 0 W
6 1 2 5 3 4 nmfval2 W Grp N = x X x E 0 W
7 6 adantr W Grp E Met X N = x X x E 0 W
8 2 5 grpidcl W Grp 0 W X
9 metcl E Met X x X 0 W X x E 0 W
10 9 3comr 0 W X E Met X x X x E 0 W
11 8 10 syl3an1 W Grp E Met X x X x E 0 W
12 11 3expa W Grp E Met X x X x E 0 W
13 7 12 fmpt3d W Grp E Met X N : X