Metamath Proof Explorer


Theorem nmfn0

Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfn0 norm fn × 0 = 0

Proof

Step Hyp Ref Expression
1 0lnfn × 0 LinFn
2 lnfnf × 0 LinFn × 0 :
3 nmfnval × 0 : norm fn × 0 = sup x | y norm y 1 x = × 0 y * <
4 1 2 3 mp2b norm fn × 0 = sup x | y norm y 1 x = × 0 y * <
5 c0ex 0 V
6 5 fvconst2 y × 0 y = 0
7 6 fveq2d y × 0 y = 0
8 abs0 0 = 0
9 7 8 eqtrdi y × 0 y = 0
10 9 eqeq2d y x = × 0 y x = 0
11 10 anbi2d y norm y 1 x = × 0 y norm y 1 x = 0
12 11 rexbiia y norm y 1 x = × 0 y y norm y 1 x = 0
13 ax-hv0cl 0
14 0le1 0 1
15 fveq2 y = 0 norm y = norm 0
16 norm0 norm 0 = 0
17 15 16 eqtrdi y = 0 norm y = 0
18 17 breq1d y = 0 norm y 1 0 1
19 18 rspcev 0 0 1 y norm y 1
20 13 14 19 mp2an y norm y 1
21 r19.41v y norm y 1 x = 0 y norm y 1 x = 0
22 20 21 mpbiran y norm y 1 x = 0 x = 0
23 12 22 bitri y norm y 1 x = × 0 y x = 0
24 23 abbii x | y norm y 1 x = × 0 y = x | x = 0
25 df-sn 0 = x | x = 0
26 24 25 eqtr4i x | y norm y 1 x = × 0 y = 0
27 26 supeq1i sup x | y norm y 1 x = × 0 y * < = sup 0 * <
28 xrltso < Or *
29 0xr 0 *
30 supsn < Or * 0 * sup 0 * < = 0
31 28 29 30 mp2an sup 0 * < = 0
32 4 27 31 3eqtri norm fn × 0 = 0