Metamath Proof Explorer


Theorem nmfnge0

Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnge0 T : 0 norm fn T

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 ffvelrn T : 0 T 0
3 1 2 mpan2 T : T 0
4 3 absge0d T : 0 T 0
5 norm0 norm 0 = 0
6 0le1 0 1
7 5 6 eqbrtri norm 0 1
8 nmfnlb T : 0 norm 0 1 T 0 norm fn T
9 1 7 8 mp3an23 T : T 0 norm fn T
10 3 abscld T : T 0
11 10 rexrd T : T 0 *
12 nmfnxr T : norm fn T *
13 0xr 0 *
14 xrletr 0 * T 0 * norm fn T * 0 T 0 T 0 norm fn T 0 norm fn T
15 13 14 mp3an1 T 0 * norm fn T * 0 T 0 T 0 norm fn T 0 norm fn T
16 11 12 15 syl2anc T : 0 T 0 T 0 norm fn T 0 norm fn T
17 4 9 16 mp2and T : 0 norm fn T