Metamath Proof Explorer


Theorem nmfnrepnf

Description: The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Assertion nmfnrepnf T : norm fn T norm fn T +∞

Proof

Step Hyp Ref Expression
1 nmfnsetre T : x | y norm y 1 x = T y
2 nmfnsetn0 T 0 x | y norm y 1 x = T y
3 2 ne0ii x | y norm y 1 x = T y
4 supxrre2 x | y norm y 1 x = T y x | y norm y 1 x = T y sup x | y norm y 1 x = T y * < sup x | y norm y 1 x = T y * < +∞
5 1 3 4 sylancl T : sup x | y norm y 1 x = T y * < sup x | y norm y 1 x = T y * < +∞
6 nmfnval T : norm fn T = sup x | y norm y 1 x = T y * <
7 6 eleq1d T : norm fn T sup x | y norm y 1 x = T y * <
8 6 neeq1d T : norm fn T +∞ sup x | y norm y 1 x = T y * < +∞
9 5 7 8 3bitr4d T : norm fn T norm fn T +∞