Metamath Proof Explorer


Theorem nmfnsetn0

Description: The set in the supremum of the functional norm definition df-nmfn is nonempty. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnsetn0 T 0 x | y norm y 1 x = T y

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 norm0 norm 0 = 0
3 0le1 0 1
4 2 3 eqbrtri norm 0 1
5 eqid T 0 = T 0
6 4 5 pm3.2i norm 0 1 T 0 = T 0
7 fveq2 y = 0 norm y = norm 0
8 7 breq1d y = 0 norm y 1 norm 0 1
9 2fveq3 y = 0 T y = T 0
10 9 eqeq2d y = 0 T 0 = T y T 0 = T 0
11 8 10 anbi12d y = 0 norm y 1 T 0 = T y norm 0 1 T 0 = T 0
12 11 rspcev 0 norm 0 1 T 0 = T 0 y norm y 1 T 0 = T y
13 1 6 12 mp2an y norm y 1 T 0 = T y
14 fvex T 0 V
15 eqeq1 x = T 0 x = T y T 0 = T y
16 15 anbi2d x = T 0 norm y 1 x = T y norm y 1 T 0 = T y
17 16 rexbidv x = T 0 y norm y 1 x = T y y norm y 1 T 0 = T y
18 14 17 elab T 0 x | y norm y 1 x = T y y norm y 1 T 0 = T y
19 13 18 mpbir T 0 x | y norm y 1 x = T y