Metamath Proof Explorer


Theorem nmfnsetre

Description: The set in the supremum of the functional norm definition df-nmfn is a set of reals. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnsetre T : x | y norm y 1 x = T y

Proof

Step Hyp Ref Expression
1 ffvelrn T : y T y
2 1 abscld T : y T y
3 eleq1 x = T y x T y
4 2 3 syl5ibr x = T y T : y x
5 4 impcom T : y x = T y x
6 5 adantrl T : y norm y 1 x = T y x
7 6 rexlimdva2 T : y norm y 1 x = T y x
8 7 abssdv T : x | y norm y 1 x = T y