Metamath Proof Explorer


Theorem nmfnxr

Description: The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnxr T : norm fn T *

Proof

Step Hyp Ref Expression
1 nmfnval T : norm fn T = sup x | y norm y 1 x = T y * <
2 nmfnsetre T : x | y norm y 1 x = T y
3 ressxr *
4 2 3 sstrdi T : x | y norm y 1 x = T y *
5 supxrcl x | y norm y 1 x = T y * sup x | y norm y 1 x = T y * < *
6 4 5 syl T : sup x | y norm y 1 x = T y * < *
7 1 6 eqeltrd T : norm fn T *