Metamath Proof Explorer


Theorem nmge0

Description: The norm of a normed group is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
Assertion nmge0 G NrmGrp A X 0 N A

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 ngpgrp G NrmGrp G Grp
4 eqid 0 G = 0 G
5 1 4 grpidcl G Grp 0 G X
6 3 5 syl G NrmGrp 0 G X
7 6 adantr G NrmGrp A X 0 G X
8 ngpxms G NrmGrp G ∞MetSp
9 eqid dist G = dist G
10 1 9 xmsge0 G ∞MetSp A X 0 G X 0 A dist G 0 G
11 8 10 syl3an1 G NrmGrp A X 0 G X 0 A dist G 0 G
12 7 11 mpd3an3 G NrmGrp A X 0 A dist G 0 G
13 2 1 4 9 nmval A X N A = A dist G 0 G
14 13 adantl G NrmGrp A X N A = A dist G 0 G
15 12 14 breqtrrd G NrmGrp A X 0 N A