Metamath Proof Explorer


Theorem nmhmco

Description: The composition of bounded linear operators is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Assertion nmhmco F T NMHom U G S NMHom T F G S NMHom U

Proof

Step Hyp Ref Expression
1 nmhmrcl2 F T NMHom U U NrmMod
2 nmhmrcl1 G S NMHom T S NrmMod
3 1 2 anim12ci F T NMHom U G S NMHom T S NrmMod U NrmMod
4 nmhmlmhm F T NMHom U F T LMHom U
5 nmhmlmhm G S NMHom T G S LMHom T
6 lmhmco F T LMHom U G S LMHom T F G S LMHom U
7 4 5 6 syl2an F T NMHom U G S NMHom T F G S LMHom U
8 nmhmnghm F T NMHom U F T NGHom U
9 nmhmnghm G S NMHom T G S NGHom T
10 nghmco F T NGHom U G S NGHom T F G S NGHom U
11 8 9 10 syl2an F T NMHom U G S NMHom T F G S NGHom U
12 7 11 jca F T NMHom U G S NMHom T F G S LMHom U F G S NGHom U
13 isnmhm F G S NMHom U S NrmMod U NrmMod F G S LMHom U F G S NGHom U
14 3 12 13 sylanbrc F T NMHom U G S NMHom T F G S NMHom U