Metamath Proof Explorer


Theorem nmhmnghm

Description: A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nmhmnghm F S NMHom T F S NGHom T

Proof

Step Hyp Ref Expression
1 isnmhm F S NMHom T S NrmMod T NrmMod F S LMHom T F S NGHom T
2 1 simprbi F S NMHom T F S LMHom T F S NGHom T
3 2 simprd F S NMHom T F S NGHom T