Metamath Proof Explorer


Theorem nmhmplusg

Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypothesis nmhmplusg.p + ˙ = + T
Assertion nmhmplusg F S NMHom T G S NMHom T F + ˙ f G S NMHom T

Proof

Step Hyp Ref Expression
1 nmhmplusg.p + ˙ = + T
2 nmhmrcl1 F S NMHom T S NrmMod
3 nmhmrcl2 G S NMHom T T NrmMod
4 2 3 anim12i F S NMHom T G S NMHom T S NrmMod T NrmMod
5 nmhmlmhm F S NMHom T F S LMHom T
6 nmhmlmhm G S NMHom T G S LMHom T
7 1 lmhmplusg F S LMHom T G S LMHom T F + ˙ f G S LMHom T
8 5 6 7 syl2an F S NMHom T G S NMHom T F + ˙ f G S LMHom T
9 nlmlmod T NrmMod T LMod
10 lmodabl T LMod T Abel
11 3 9 10 3syl G S NMHom T T Abel
12 11 adantl F S NMHom T G S NMHom T T Abel
13 nmhmnghm F S NMHom T F S NGHom T
14 13 adantr F S NMHom T G S NMHom T F S NGHom T
15 nmhmnghm G S NMHom T G S NGHom T
16 15 adantl F S NMHom T G S NMHom T G S NGHom T
17 1 nghmplusg T Abel F S NGHom T G S NGHom T F + ˙ f G S NGHom T
18 12 14 16 17 syl3anc F S NMHom T G S NMHom T F + ˙ f G S NGHom T
19 8 18 jca F S NMHom T G S NMHom T F + ˙ f G S LMHom T F + ˙ f G S NGHom T
20 isnmhm F + ˙ f G S NMHom T S NrmMod T NrmMod F + ˙ f G S LMHom T F + ˙ f G S NGHom T
21 4 19 20 sylanbrc F S NMHom T G S NMHom T F + ˙ f G S NMHom T