Metamath Proof Explorer


Theorem nminv

Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nminv.i I = inv g G
Assertion nminv G NrmGrp A X N I A = N A

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nminv.i I = inv g G
4 ngpgrp G NrmGrp G Grp
5 4 adantr G NrmGrp A X G Grp
6 eqid 0 G = 0 G
7 1 6 grpidcl G Grp 0 G X
8 5 7 syl G NrmGrp A X 0 G X
9 eqid - G = - G
10 eqid dist G = dist G
11 2 1 9 10 ngpdsr G NrmGrp A X 0 G X A dist G 0 G = N 0 G - G A
12 8 11 mpd3an3 G NrmGrp A X A dist G 0 G = N 0 G - G A
13 2 1 6 10 nmval A X N A = A dist G 0 G
14 13 adantl G NrmGrp A X N A = A dist G 0 G
15 1 9 3 6 grpinvval2 G Grp A X I A = 0 G - G A
16 4 15 sylan G NrmGrp A X I A = 0 G - G A
17 16 fveq2d G NrmGrp A X N I A = N 0 G - G A
18 12 14 17 3eqtr4rd G NrmGrp A X N I A = N A