Step |
Hyp |
Ref |
Expression |
1 |
|
nmlno0.3 |
|
2 |
|
nmlno0.0 |
|
3 |
|
nmlno0.7 |
|
4 |
|
nmlno0lem.u |
|
5 |
|
nmlno0lem.w |
|
6 |
|
nmlno0lem.l |
|
7 |
|
nmlno0lem.1 |
|
8 |
|
nmlno0lem.2 |
|
9 |
|
nmlno0lem.r |
|
10 |
|
nmlno0lem.s |
|
11 |
|
nmlno0lem.p |
|
12 |
|
nmlno0lem.q |
|
13 |
|
nmlno0lem.k |
|
14 |
|
nmlno0lem.m |
|
15 |
7 13
|
nvcl |
|
16 |
4 15
|
mpan |
|
17 |
16
|
recnd |
|
18 |
17
|
adantr |
|
19 |
7 11 13
|
nvz |
|
20 |
4 19
|
mpan |
|
21 |
|
fveq2 |
|
22 |
7 8 11 12 3
|
lno0 |
|
23 |
4 5 6 22
|
mp3an |
|
24 |
21 23
|
eqtrdi |
|
25 |
20 24
|
syl6bi |
|
26 |
25
|
necon3d |
|
27 |
26
|
imp |
|
28 |
18 27
|
recne0d |
|
29 |
|
simpr |
|
30 |
18 27
|
reccld |
|
31 |
7 8 3
|
lnof |
|
32 |
4 5 6 31
|
mp3an |
|
33 |
32
|
ffvelrni |
|
34 |
33
|
adantr |
|
35 |
8 10 12
|
nvmul0or |
|
36 |
5 35
|
mp3an1 |
|
37 |
30 34 36
|
syl2anc |
|
38 |
37
|
necon3abid |
|
39 |
|
neanior |
|
40 |
38 39
|
bitr4di |
|
41 |
28 29 40
|
mpbir2and |
|
42 |
8 10
|
nvscl |
|
43 |
5 42
|
mp3an1 |
|
44 |
30 34 43
|
syl2anc |
|
45 |
8 12 14
|
nvgt0 |
|
46 |
5 44 45
|
sylancr |
|
47 |
41 46
|
mpbid |
|
48 |
47
|
ex |
|
49 |
48
|
adantl |
|
50 |
8 14
|
nmosetre |
|
51 |
5 32 50
|
mp2an |
|
52 |
|
ressxr |
|
53 |
51 52
|
sstri |
|
54 |
|
simpl |
|
55 |
7 9
|
nvscl |
|
56 |
4 55
|
mp3an1 |
|
57 |
30 54 56
|
syl2anc |
|
58 |
24
|
necon3i |
|
59 |
7 9 11 13
|
nv1 |
|
60 |
4 59
|
mp3an1 |
|
61 |
58 60
|
sylan2 |
|
62 |
|
1re |
|
63 |
61 62
|
eqeltrdi |
|
64 |
|
eqle |
|
65 |
63 61 64
|
syl2anc |
|
66 |
4 5 6
|
3pm3.2i |
|
67 |
7 9 10 3
|
lnomul |
|
68 |
66 67
|
mpan |
|
69 |
30 54 68
|
syl2anc |
|
70 |
69
|
eqcomd |
|
71 |
70
|
fveq2d |
|
72 |
|
fveq2 |
|
73 |
72
|
breq1d |
|
74 |
|
2fveq3 |
|
75 |
74
|
eqeq2d |
|
76 |
73 75
|
anbi12d |
|
77 |
76
|
rspcev |
|
78 |
57 65 71 77
|
syl12anc |
|
79 |
|
fvex |
|
80 |
|
eqeq1 |
|
81 |
80
|
anbi2d |
|
82 |
81
|
rexbidv |
|
83 |
79 82
|
elab |
|
84 |
78 83
|
sylibr |
|
85 |
|
supxrub |
|
86 |
53 84 85
|
sylancr |
|
87 |
86
|
adantll |
|
88 |
7 8 13 14 1
|
nmooval |
|
89 |
4 5 32 88
|
mp3an |
|
90 |
89
|
eqeq1i |
|
91 |
90
|
biimpi |
|
92 |
91
|
ad2antrr |
|
93 |
87 92
|
breqtrd |
|
94 |
8 14
|
nvcl |
|
95 |
5 44 94
|
sylancr |
|
96 |
|
0re |
|
97 |
|
lenlt |
|
98 |
95 96 97
|
sylancl |
|
99 |
98
|
adantll |
|
100 |
93 99
|
mpbid |
|
101 |
100
|
ex |
|
102 |
49 101
|
pm2.65d |
|
103 |
|
nne |
|
104 |
102 103
|
sylib |
|
105 |
7 12 2
|
0oval |
|
106 |
4 5 105
|
mp3an12 |
|
107 |
106
|
adantl |
|
108 |
104 107
|
eqtr4d |
|
109 |
108
|
ralrimiva |
|
110 |
|
ffn |
|
111 |
32 110
|
ax-mp |
|
112 |
7 8 2
|
0oo |
|
113 |
4 5 112
|
mp2an |
|
114 |
|
ffn |
|
115 |
113 114
|
ax-mp |
|
116 |
|
eqfnfv |
|
117 |
111 115 116
|
mp2an |
|
118 |
109 117
|
sylibr |
|
119 |
|
fveq2 |
|
120 |
1 2
|
nmoo0 |
|
121 |
4 5 120
|
mp2an |
|
122 |
119 121
|
eqtrdi |
|
123 |
118 122
|
impbii |
|