Metamath Proof Explorer


Theorem nmlnogt0

Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmlnogt0.3 N = U normOp OLD W
nmlnogt0.0 Z = U 0 op W
nmlnogt0.7 L = U LnOp W
Assertion nmlnogt0 U NrmCVec W NrmCVec T L T Z 0 < N T

Proof

Step Hyp Ref Expression
1 nmlnogt0.3 N = U normOp OLD W
2 nmlnogt0.0 Z = U 0 op W
3 nmlnogt0.7 L = U LnOp W
4 1 2 3 nmlno0 U NrmCVec W NrmCVec T L N T = 0 T = Z
5 4 necon3bid U NrmCVec W NrmCVec T L N T 0 T Z
6 eqid BaseSet U = BaseSet U
7 eqid BaseSet W = BaseSet W
8 6 7 3 lnof U NrmCVec W NrmCVec T L T : BaseSet U BaseSet W
9 6 7 1 nmoxr U NrmCVec W NrmCVec T : BaseSet U BaseSet W N T *
10 6 7 1 nmooge0 U NrmCVec W NrmCVec T : BaseSet U BaseSet W 0 N T
11 0xr 0 *
12 xrlttri2 N T * 0 * N T 0 N T < 0 0 < N T
13 11 12 mpan2 N T * N T 0 N T < 0 0 < N T
14 13 adantr N T * 0 N T N T 0 N T < 0 0 < N T
15 xrlenlt 0 * N T * 0 N T ¬ N T < 0
16 11 15 mpan N T * 0 N T ¬ N T < 0
17 16 biimpa N T * 0 N T ¬ N T < 0
18 biorf ¬ N T < 0 0 < N T N T < 0 0 < N T
19 17 18 syl N T * 0 N T 0 < N T N T < 0 0 < N T
20 14 19 bitr4d N T * 0 N T N T 0 0 < N T
21 9 10 20 syl2anc U NrmCVec W NrmCVec T : BaseSet U BaseSet W N T 0 0 < N T
22 8 21 syld3an3 U NrmCVec W NrmCVec T L N T 0 0 < N T
23 5 22 bitr3d U NrmCVec W NrmCVec T L T Z 0 < N T