Metamath Proof Explorer


Theorem nmlnop0

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmlnop0 T LinOp norm op T = 0 T = 0 hop

Proof

Step Hyp Ref Expression
1 fveqeq2 T = if T LinOp T 0 hop norm op T = 0 norm op if T LinOp T 0 hop = 0
2 eqeq1 T = if T LinOp T 0 hop T = 0 hop if T LinOp T 0 hop = 0 hop
3 1 2 bibi12d T = if T LinOp T 0 hop norm op T = 0 T = 0 hop norm op if T LinOp T 0 hop = 0 if T LinOp T 0 hop = 0 hop
4 0lnop 0 hop LinOp
5 4 elimel if T LinOp T 0 hop LinOp
6 5 nmlnop0iHIL norm op if T LinOp T 0 hop = 0 if T LinOp T 0 hop = 0 hop
7 3 6 dedth T LinOp norm op T = 0 T = 0 hop