Metamath Proof Explorer


Theorem nmlnop0iHIL

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 T LinOp
Assertion nmlnop0iHIL norm op T = 0 T = 0 hop

Proof

Step Hyp Ref Expression
1 nmlnop0.1 T LinOp
2 eqid + norm = + norm
3 eqid + norm normOp OLD + norm = + norm normOp OLD + norm
4 2 3 hhnmoi norm op = + norm normOp OLD + norm
5 eqid + norm 0 op + norm = + norm 0 op + norm
6 2 5 hh0oi 0 hop = + norm 0 op + norm
7 eqid + norm LnOp + norm = + norm LnOp + norm
8 2 7 hhlnoi LinOp = + norm LnOp + norm
9 2 hhnv + norm NrmCVec
10 4 6 8 9 9 nmlno0i T LinOp norm op T = 0 T = 0 hop
11 1 10 ax-mp norm op T = 0 T = 0 hop