Metamath Proof Explorer


Theorem nmlnopgt0i

Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 T LinOp
Assertion nmlnopgt0i T 0 hop 0 < norm op T

Proof

Step Hyp Ref Expression
1 nmlnop0.1 T LinOp
2 1 nmlnop0iHIL norm op T = 0 T = 0 hop
3 2 necon3bii norm op T 0 T 0 hop
4 1 lnopfi T :
5 nmopgt0 T : norm op T 0 0 < norm op T
6 4 5 ax-mp norm op T 0 0 < norm op T
7 3 6 bitr3i T 0 hop 0 < norm op T