Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
nmmul
Next ⟩
nrgdsdi
Metamath Proof Explorer
Ascii
Unicode
Theorem
nmmul
Description:
The norm of a product in a normed ring.
(Contributed by
Mario Carneiro
, 5-Oct-2015)
Ref
Expression
Hypotheses
nmmul.x
⊢
X
=
Base
R
nmmul.n
⊢
N
=
norm
⁡
R
nmmul.t
⊢
·
˙
=
⋅
R
Assertion
nmmul
⊢
R
∈
NrmRing
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
·
˙
B
=
N
⁡
A
⁢
N
⁡
B
Proof
Step
Hyp
Ref
Expression
1
nmmul.x
⊢
X
=
Base
R
2
nmmul.n
⊢
N
=
norm
⁡
R
3
nmmul.t
⊢
·
˙
=
⋅
R
4
eqid
⊢
AbsVal
⁡
R
=
AbsVal
⁡
R
5
2
4
nrgabv
⊢
R
∈
NrmRing
→
N
∈
AbsVal
⁡
R
6
4
1
3
abvmul
⊢
N
∈
AbsVal
⁡
R
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
·
˙
B
=
N
⁡
A
⁢
N
⁡
B
7
5
6
syl3an1
⊢
R
∈
NrmRing
∧
A
∈
X
∧
B
∈
X
→
N
⁡
A
·
˙
B
=
N
⁡
A
⁢
N
⁡
B