Metamath Proof Explorer


Theorem nmmul

Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nmmul.x X = Base R
nmmul.n N = norm R
nmmul.t · ˙ = R
Assertion nmmul R NrmRing A X B X N A · ˙ B = N A N B

Proof

Step Hyp Ref Expression
1 nmmul.x X = Base R
2 nmmul.n N = norm R
3 nmmul.t · ˙ = R
4 eqid AbsVal R = AbsVal R
5 2 4 nrgabv R NrmRing N AbsVal R
6 4 1 3 abvmul N AbsVal R A X B X N A · ˙ B = N A N B
7 5 6 syl3an1 R NrmRing A X B X N A · ˙ B = N A N B