Metamath Proof Explorer


Theorem nmne0

Description: The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nmeq0.z 0 ˙ = 0 G
Assertion nmne0 G NrmGrp A X A 0 ˙ N A 0

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nmeq0.z 0 ˙ = 0 G
4 1 2 3 nmeq0 G NrmGrp A X N A = 0 A = 0 ˙
5 4 necon3bid G NrmGrp A X N A 0 A 0 ˙
6 5 biimp3ar G NrmGrp A X A 0 ˙ N A 0