Metamath Proof Explorer


Theorem nmocl

Description: The operator norm of an operator is an extended real. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion nmocl S NrmGrp T NrmGrp F S GrpHom T N F *

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 1 nmof S NrmGrp T NrmGrp N : S GrpHom T *
3 2 ffvelrnda S NrmGrp T NrmGrp F S GrpHom T N F *
4 3 3impa S NrmGrp T NrmGrp F S GrpHom T N F *