Metamath Proof Explorer


Theorem nmoco

Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmoco.1 N = S normOp U
nmoco.2 L = T normOp U
nmoco.3 M = S normOp T
Assertion nmoco F T NGHom U G S NGHom T N F G L F M G

Proof

Step Hyp Ref Expression
1 nmoco.1 N = S normOp U
2 nmoco.2 L = T normOp U
3 nmoco.3 M = S normOp T
4 eqid Base S = Base S
5 eqid norm S = norm S
6 eqid norm U = norm U
7 eqid 0 S = 0 S
8 nghmrcl1 G S NGHom T S NrmGrp
9 8 adantl F T NGHom U G S NGHom T S NrmGrp
10 nghmrcl2 F T NGHom U U NrmGrp
11 10 adantr F T NGHom U G S NGHom T U NrmGrp
12 nghmghm F T NGHom U F T GrpHom U
13 nghmghm G S NGHom T G S GrpHom T
14 ghmco F T GrpHom U G S GrpHom T F G S GrpHom U
15 12 13 14 syl2an F T NGHom U G S NGHom T F G S GrpHom U
16 2 nghmcl F T NGHom U L F
17 3 nghmcl G S NGHom T M G
18 remulcl L F M G L F M G
19 16 17 18 syl2an F T NGHom U G S NGHom T L F M G
20 nghmrcl1 F T NGHom U T NrmGrp
21 2 nmoge0 T NrmGrp U NrmGrp F T GrpHom U 0 L F
22 20 10 12 21 syl3anc F T NGHom U 0 L F
23 16 22 jca F T NGHom U L F 0 L F
24 nghmrcl2 G S NGHom T T NrmGrp
25 3 nmoge0 S NrmGrp T NrmGrp G S GrpHom T 0 M G
26 8 24 13 25 syl3anc G S NGHom T 0 M G
27 17 26 jca G S NGHom T M G 0 M G
28 mulge0 L F 0 L F M G 0 M G 0 L F M G
29 23 27 28 syl2an F T NGHom U G S NGHom T 0 L F M G
30 10 ad2antrr F T NGHom U G S NGHom T x Base S x 0 S U NrmGrp
31 12 ad2antrr F T NGHom U G S NGHom T x Base S x 0 S F T GrpHom U
32 eqid Base T = Base T
33 eqid Base U = Base U
34 32 33 ghmf F T GrpHom U F : Base T Base U
35 31 34 syl F T NGHom U G S NGHom T x Base S x 0 S F : Base T Base U
36 13 ad2antlr F T NGHom U G S NGHom T x Base S x 0 S G S GrpHom T
37 4 32 ghmf G S GrpHom T G : Base S Base T
38 36 37 syl F T NGHom U G S NGHom T x Base S x 0 S G : Base S Base T
39 simprl F T NGHom U G S NGHom T x Base S x 0 S x Base S
40 38 39 ffvelrnd F T NGHom U G S NGHom T x Base S x 0 S G x Base T
41 35 40 ffvelrnd F T NGHom U G S NGHom T x Base S x 0 S F G x Base U
42 33 6 nmcl U NrmGrp F G x Base U norm U F G x
43 30 41 42 syl2anc F T NGHom U G S NGHom T x Base S x 0 S norm U F G x
44 16 ad2antrr F T NGHom U G S NGHom T x Base S x 0 S L F
45 20 ad2antrr F T NGHom U G S NGHom T x Base S x 0 S T NrmGrp
46 eqid norm T = norm T
47 32 46 nmcl T NrmGrp G x Base T norm T G x
48 45 40 47 syl2anc F T NGHom U G S NGHom T x Base S x 0 S norm T G x
49 44 48 remulcld F T NGHom U G S NGHom T x Base S x 0 S L F norm T G x
50 17 ad2antlr F T NGHom U G S NGHom T x Base S x 0 S M G
51 4 5 nmcl S NrmGrp x Base S norm S x
52 8 51 sylan G S NGHom T x Base S norm S x
53 52 ad2ant2lr F T NGHom U G S NGHom T x Base S x 0 S norm S x
54 50 53 remulcld F T NGHom U G S NGHom T x Base S x 0 S M G norm S x
55 44 54 remulcld F T NGHom U G S NGHom T x Base S x 0 S L F M G norm S x
56 simpll F T NGHom U G S NGHom T x Base S x 0 S F T NGHom U
57 2 32 46 6 nmoi F T NGHom U G x Base T norm U F G x L F norm T G x
58 56 40 57 syl2anc F T NGHom U G S NGHom T x Base S x 0 S norm U F G x L F norm T G x
59 23 ad2antrr F T NGHom U G S NGHom T x Base S x 0 S L F 0 L F
60 3 4 5 46 nmoi G S NGHom T x Base S norm T G x M G norm S x
61 60 ad2ant2lr F T NGHom U G S NGHom T x Base S x 0 S norm T G x M G norm S x
62 lemul2a norm T G x M G norm S x L F 0 L F norm T G x M G norm S x L F norm T G x L F M G norm S x
63 48 54 59 61 62 syl31anc F T NGHom U G S NGHom T x Base S x 0 S L F norm T G x L F M G norm S x
64 43 49 55 58 63 letrd F T NGHom U G S NGHom T x Base S x 0 S norm U F G x L F M G norm S x
65 fvco3 G : Base S Base T x Base S F G x = F G x
66 38 39 65 syl2anc F T NGHom U G S NGHom T x Base S x 0 S F G x = F G x
67 66 fveq2d F T NGHom U G S NGHom T x Base S x 0 S norm U F G x = norm U F G x
68 44 recnd F T NGHom U G S NGHom T x Base S x 0 S L F
69 50 recnd F T NGHom U G S NGHom T x Base S x 0 S M G
70 53 recnd F T NGHom U G S NGHom T x Base S x 0 S norm S x
71 68 69 70 mulassd F T NGHom U G S NGHom T x Base S x 0 S L F M G norm S x = L F M G norm S x
72 64 67 71 3brtr4d F T NGHom U G S NGHom T x Base S x 0 S norm U F G x L F M G norm S x
73 1 4 5 6 7 9 11 15 19 29 72 nmolb2d F T NGHom U G S NGHom T N F G L F M G