Step |
Hyp |
Ref |
Expression |
1 |
|
nmoco.1 |
|
2 |
|
nmoco.2 |
|
3 |
|
nmoco.3 |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
nghmrcl1 |
|
9 |
8
|
adantl |
|
10 |
|
nghmrcl2 |
|
11 |
10
|
adantr |
|
12 |
|
nghmghm |
|
13 |
|
nghmghm |
|
14 |
|
ghmco |
|
15 |
12 13 14
|
syl2an |
|
16 |
2
|
nghmcl |
|
17 |
3
|
nghmcl |
|
18 |
|
remulcl |
|
19 |
16 17 18
|
syl2an |
|
20 |
|
nghmrcl1 |
|
21 |
2
|
nmoge0 |
|
22 |
20 10 12 21
|
syl3anc |
|
23 |
16 22
|
jca |
|
24 |
|
nghmrcl2 |
|
25 |
3
|
nmoge0 |
|
26 |
8 24 13 25
|
syl3anc |
|
27 |
17 26
|
jca |
|
28 |
|
mulge0 |
|
29 |
23 27 28
|
syl2an |
|
30 |
10
|
ad2antrr |
|
31 |
12
|
ad2antrr |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
32 33
|
ghmf |
|
35 |
31 34
|
syl |
|
36 |
13
|
ad2antlr |
|
37 |
4 32
|
ghmf |
|
38 |
36 37
|
syl |
|
39 |
|
simprl |
|
40 |
38 39
|
ffvelrnd |
|
41 |
35 40
|
ffvelrnd |
|
42 |
33 6
|
nmcl |
|
43 |
30 41 42
|
syl2anc |
|
44 |
16
|
ad2antrr |
|
45 |
20
|
ad2antrr |
|
46 |
|
eqid |
|
47 |
32 46
|
nmcl |
|
48 |
45 40 47
|
syl2anc |
|
49 |
44 48
|
remulcld |
|
50 |
17
|
ad2antlr |
|
51 |
4 5
|
nmcl |
|
52 |
8 51
|
sylan |
|
53 |
52
|
ad2ant2lr |
|
54 |
50 53
|
remulcld |
|
55 |
44 54
|
remulcld |
|
56 |
|
simpll |
|
57 |
2 32 46 6
|
nmoi |
|
58 |
56 40 57
|
syl2anc |
|
59 |
23
|
ad2antrr |
|
60 |
3 4 5 46
|
nmoi |
|
61 |
60
|
ad2ant2lr |
|
62 |
|
lemul2a |
|
63 |
48 54 59 61 62
|
syl31anc |
|
64 |
43 49 55 58 63
|
letrd |
|
65 |
|
fvco3 |
|
66 |
38 39 65
|
syl2anc |
|
67 |
66
|
fveq2d |
|
68 |
44
|
recnd |
|
69 |
50
|
recnd |
|
70 |
53
|
recnd |
|
71 |
68 69 70
|
mulassd |
|
72 |
64 67 71
|
3brtr4d |
|
73 |
1 4 5 6 7 9 11 15 19 29 72
|
nmolb2d |
|