Metamath Proof Explorer


Theorem nmods

Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015)

Ref Expression
Hypotheses nmods.n N = S normOp T
nmods.v V = Base S
nmods.c C = dist S
nmods.d D = dist T
Assertion nmods F S NGHom T A V B V F A D F B N F A C B

Proof

Step Hyp Ref Expression
1 nmods.n N = S normOp T
2 nmods.v V = Base S
3 nmods.c C = dist S
4 nmods.d D = dist T
5 simp1 F S NGHom T A V B V F S NGHom T
6 nghmrcl1 F S NGHom T S NrmGrp
7 ngpgrp S NrmGrp S Grp
8 6 7 syl F S NGHom T S Grp
9 eqid - S = - S
10 2 9 grpsubcl S Grp A V B V A - S B V
11 8 10 syl3an1 F S NGHom T A V B V A - S B V
12 eqid norm S = norm S
13 eqid norm T = norm T
14 1 2 12 13 nmoi F S NGHom T A - S B V norm T F A - S B N F norm S A - S B
15 5 11 14 syl2anc F S NGHom T A V B V norm T F A - S B N F norm S A - S B
16 nghmrcl2 F S NGHom T T NrmGrp
17 16 3ad2ant1 F S NGHom T A V B V T NrmGrp
18 nghmghm F S NGHom T F S GrpHom T
19 18 3ad2ant1 F S NGHom T A V B V F S GrpHom T
20 eqid Base T = Base T
21 2 20 ghmf F S GrpHom T F : V Base T
22 19 21 syl F S NGHom T A V B V F : V Base T
23 simp2 F S NGHom T A V B V A V
24 22 23 ffvelrnd F S NGHom T A V B V F A Base T
25 simp3 F S NGHom T A V B V B V
26 22 25 ffvelrnd F S NGHom T A V B V F B Base T
27 eqid - T = - T
28 13 20 27 4 ngpds T NrmGrp F A Base T F B Base T F A D F B = norm T F A - T F B
29 17 24 26 28 syl3anc F S NGHom T A V B V F A D F B = norm T F A - T F B
30 2 9 27 ghmsub F S GrpHom T A V B V F A - S B = F A - T F B
31 18 30 syl3an1 F S NGHom T A V B V F A - S B = F A - T F B
32 31 fveq2d F S NGHom T A V B V norm T F A - S B = norm T F A - T F B
33 29 32 eqtr4d F S NGHom T A V B V F A D F B = norm T F A - S B
34 12 2 9 3 ngpds S NrmGrp A V B V A C B = norm S A - S B
35 6 34 syl3an1 F S NGHom T A V B V A C B = norm S A - S B
36 35 oveq2d F S NGHom T A V B V N F A C B = N F norm S A - S B
37 15 33 36 3brtr4d F S NGHom T A V B V F A D F B N F A C B