Metamath Proof Explorer


Theorem nmoeq0

Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmo0.1 N = S normOp T
nmo0.2 V = Base S
nmo0.3 0 ˙ = 0 T
Assertion nmoeq0 S NrmGrp T NrmGrp F S GrpHom T N F = 0 F = V × 0 ˙

Proof

Step Hyp Ref Expression
1 nmo0.1 N = S normOp T
2 nmo0.2 V = Base S
3 nmo0.3 0 ˙ = 0 T
4 id N F = 0 N F = 0
5 0re 0
6 4 5 eqeltrdi N F = 0 N F
7 1 isnghm2 S NrmGrp T NrmGrp F S GrpHom T F S NGHom T N F
8 7 biimpar S NrmGrp T NrmGrp F S GrpHom T N F F S NGHom T
9 6 8 sylan2 S NrmGrp T NrmGrp F S GrpHom T N F = 0 F S NGHom T
10 eqid norm S = norm S
11 eqid norm T = norm T
12 1 2 10 11 nmoi F S NGHom T x V norm T F x N F norm S x
13 9 12 sylan S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x N F norm S x
14 simplr S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V N F = 0
15 14 oveq1d S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V N F norm S x = 0 norm S x
16 simpl1 S NrmGrp T NrmGrp F S GrpHom T N F = 0 S NrmGrp
17 2 10 nmcl S NrmGrp x V norm S x
18 16 17 sylan S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm S x
19 18 recnd S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm S x
20 19 mul02d S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V 0 norm S x = 0
21 15 20 eqtrd S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V N F norm S x = 0
22 13 21 breqtrd S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x 0
23 simpll2 S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V T NrmGrp
24 simpl3 S NrmGrp T NrmGrp F S GrpHom T N F = 0 F S GrpHom T
25 eqid Base T = Base T
26 2 25 ghmf F S GrpHom T F : V Base T
27 24 26 syl S NrmGrp T NrmGrp F S GrpHom T N F = 0 F : V Base T
28 27 ffvelrnda S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V F x Base T
29 25 11 nmge0 T NrmGrp F x Base T 0 norm T F x
30 23 28 29 syl2anc S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V 0 norm T F x
31 25 11 nmcl T NrmGrp F x Base T norm T F x
32 23 28 31 syl2anc S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x
33 letri3 norm T F x 0 norm T F x = 0 norm T F x 0 0 norm T F x
34 32 5 33 sylancl S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x = 0 norm T F x 0 0 norm T F x
35 22 30 34 mpbir2and S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x = 0
36 25 11 3 nmeq0 T NrmGrp F x Base T norm T F x = 0 F x = 0 ˙
37 23 28 36 syl2anc S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V norm T F x = 0 F x = 0 ˙
38 35 37 mpbid S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V F x = 0 ˙
39 38 mpteq2dva S NrmGrp T NrmGrp F S GrpHom T N F = 0 x V F x = x V 0 ˙
40 27 feqmptd S NrmGrp T NrmGrp F S GrpHom T N F = 0 F = x V F x
41 fconstmpt V × 0 ˙ = x V 0 ˙
42 41 a1i S NrmGrp T NrmGrp F S GrpHom T N F = 0 V × 0 ˙ = x V 0 ˙
43 39 40 42 3eqtr4d S NrmGrp T NrmGrp F S GrpHom T N F = 0 F = V × 0 ˙
44 43 ex S NrmGrp T NrmGrp F S GrpHom T N F = 0 F = V × 0 ˙
45 1 2 3 nmo0 S NrmGrp T NrmGrp N V × 0 ˙ = 0
46 45 3adant3 S NrmGrp T NrmGrp F S GrpHom T N V × 0 ˙ = 0
47 fveqeq2 F = V × 0 ˙ N F = 0 N V × 0 ˙ = 0
48 46 47 syl5ibrcom S NrmGrp T NrmGrp F S GrpHom T F = V × 0 ˙ N F = 0
49 44 48 impbid S NrmGrp T NrmGrp F S GrpHom T N F = 0 F = V × 0 ˙