Step |
Hyp |
Ref |
Expression |
1 |
|
nmo0.1 |
|
2 |
|
nmo0.2 |
|
3 |
|
nmo0.3 |
|
4 |
|
id |
|
5 |
|
0re |
|
6 |
4 5
|
eqeltrdi |
|
7 |
1
|
isnghm2 |
|
8 |
7
|
biimpar |
|
9 |
6 8
|
sylan2 |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
1 2 10 11
|
nmoi |
|
13 |
9 12
|
sylan |
|
14 |
|
simplr |
|
15 |
14
|
oveq1d |
|
16 |
|
simpl1 |
|
17 |
2 10
|
nmcl |
|
18 |
16 17
|
sylan |
|
19 |
18
|
recnd |
|
20 |
19
|
mul02d |
|
21 |
15 20
|
eqtrd |
|
22 |
13 21
|
breqtrd |
|
23 |
|
simpll2 |
|
24 |
|
simpl3 |
|
25 |
|
eqid |
|
26 |
2 25
|
ghmf |
|
27 |
24 26
|
syl |
|
28 |
27
|
ffvelrnda |
|
29 |
25 11
|
nmge0 |
|
30 |
23 28 29
|
syl2anc |
|
31 |
25 11
|
nmcl |
|
32 |
23 28 31
|
syl2anc |
|
33 |
|
letri3 |
|
34 |
32 5 33
|
sylancl |
|
35 |
22 30 34
|
mpbir2and |
|
36 |
25 11 3
|
nmeq0 |
|
37 |
23 28 36
|
syl2anc |
|
38 |
35 37
|
mpbid |
|
39 |
38
|
mpteq2dva |
|
40 |
27
|
feqmptd |
|
41 |
|
fconstmpt |
|
42 |
41
|
a1i |
|
43 |
39 40 42
|
3eqtr4d |
|
44 |
43
|
ex |
|
45 |
1 2 3
|
nmo0 |
|
46 |
45
|
3adant3 |
|
47 |
|
fveqeq2 |
|
48 |
46 47
|
syl5ibrcom |
|
49 |
44 48
|
impbid |
|