Metamath Proof Explorer


Theorem nmof

Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion nmof S NrmGrp T NrmGrp N : S GrpHom T *

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 eqid Base S = Base S
3 eqid norm S = norm S
4 eqid norm T = norm T
5 1 2 3 4 nmofval S NrmGrp T NrmGrp N = f S GrpHom T sup r 0 +∞ | x Base S norm T f x r norm S x * <
6 ssrab2 r 0 +∞ | x Base S norm T f x r norm S x 0 +∞
7 icossxr 0 +∞ *
8 6 7 sstri r 0 +∞ | x Base S norm T f x r norm S x *
9 infxrcl r 0 +∞ | x Base S norm T f x r norm S x * sup r 0 +∞ | x Base S norm T f x r norm S x * < *
10 8 9 mp1i S NrmGrp T NrmGrp f S GrpHom T sup r 0 +∞ | x Base S norm T f x r norm S x * < *
11 5 10 fmpt3d S NrmGrp T NrmGrp N : S GrpHom T *