Metamath Proof Explorer


Theorem nmoffn

Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Assertion nmoffn normOp Fn NrmGrp × NrmGrp

Proof

Step Hyp Ref Expression
1 df-nmo normOp = s NrmGrp , t NrmGrp f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * <
2 eqid f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < = f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * <
3 ssrab2 r 0 +∞ | x Base s norm t f x r norm s x 0 +∞
4 icossxr 0 +∞ *
5 3 4 sstri r 0 +∞ | x Base s norm t f x r norm s x *
6 infxrcl r 0 +∞ | x Base s norm t f x r norm s x * sup r 0 +∞ | x Base s norm t f x r norm s x * < *
7 5 6 mp1i f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < *
8 2 7 fmpti f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < : s GrpHom t *
9 ovex s GrpHom t V
10 xrex * V
11 fex2 f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < : s GrpHom t * s GrpHom t V * V f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < V
12 8 9 10 11 mp3an f s GrpHom t sup r 0 +∞ | x Base s norm t f x r norm s x * < V
13 1 12 fnmpoi normOp Fn NrmGrp × NrmGrp