Metamath Proof Explorer


Theorem nmoge0

Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 elrege0 r 0 +∞ r 0 r
3 2 simprbi r 0 +∞ 0 r
4 3 adantl S NrmGrp T NrmGrp F S GrpHom T r 0 +∞ 0 r
5 4 a1d S NrmGrp T NrmGrp F S GrpHom T r 0 +∞ x Base S norm T F x r norm S x 0 r
6 5 ralrimiva S NrmGrp T NrmGrp F S GrpHom T r 0 +∞ x Base S norm T F x r norm S x 0 r
7 0xr 0 *
8 eqid Base S = Base S
9 eqid norm S = norm S
10 eqid norm T = norm T
11 1 8 9 10 nmogelb S NrmGrp T NrmGrp F S GrpHom T 0 * 0 N F r 0 +∞ x Base S norm T F x r norm S x 0 r
12 7 11 mpan2 S NrmGrp T NrmGrp F S GrpHom T 0 N F r 0 +∞ x Base S norm T F x r norm S x 0 r
13 6 12 mpbird S NrmGrp T NrmGrp F S GrpHom T 0 N F