Metamath Proof Explorer


Theorem nmogelb

Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmofval.2 V = Base S
nmofval.3 L = norm S
nmofval.4 M = norm T
Assertion nmogelb S NrmGrp T NrmGrp F S GrpHom T A * A N F r 0 +∞ x V M F x r L x A r

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmofval.2 V = Base S
3 nmofval.3 L = norm S
4 nmofval.4 M = norm T
5 1 2 3 4 nmoval S NrmGrp T NrmGrp F S GrpHom T N F = sup r 0 +∞ | x V M F x r L x * <
6 5 breq2d S NrmGrp T NrmGrp F S GrpHom T A N F A sup r 0 +∞ | x V M F x r L x * <
7 ssrab2 r 0 +∞ | x V M F x r L x 0 +∞
8 icossxr 0 +∞ *
9 7 8 sstri r 0 +∞ | x V M F x r L x *
10 infxrgelb r 0 +∞ | x V M F x r L x * A * A sup r 0 +∞ | x V M F x r L x * < s r 0 +∞ | x V M F x r L x A s
11 9 10 mpan A * A sup r 0 +∞ | x V M F x r L x * < s r 0 +∞ | x V M F x r L x A s
12 breq2 s = r A s A r
13 12 ralrab2 s r 0 +∞ | x V M F x r L x A s r 0 +∞ x V M F x r L x A r
14 11 13 bitrdi A * A sup r 0 +∞ | x V M F x r L x * < r 0 +∞ x V M F x r L x A r
15 6 14 sylan9bb S NrmGrp T NrmGrp F S GrpHom T A * A N F r 0 +∞ x V M F x r L x A r