Metamath Proof Explorer


Theorem nmogtmnf

Description: The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X=BaseSetU
nmoxr.2 Y=BaseSetW
nmoxr.3 N=UnormOpOLDW
Assertion nmogtmnf UNrmCVecWNrmCVecT:XY−∞<NT

Proof

Step Hyp Ref Expression
1 nmoxr.1 X=BaseSetU
2 nmoxr.2 Y=BaseSetW
3 nmoxr.3 N=UnormOpOLDW
4 1 2 3 nmorepnf UNrmCVecWNrmCVecT:XYNTNT+∞
5 df-ne NT+∞¬NT=+∞
6 4 5 bitrdi UNrmCVecWNrmCVecT:XYNT¬NT=+∞
7 xor3 ¬NTNT=+∞NT¬NT=+∞
8 nbior ¬NTNT=+∞NTNT=+∞
9 7 8 sylbir NT¬NT=+∞NTNT=+∞
10 mnfltxr NTNT=+∞−∞<NT
11 6 9 10 3syl UNrmCVecWNrmCVecT:XY−∞<NT