Metamath Proof Explorer


Theorem nmoi

Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmoi.2 V = Base S
nmoi.3 L = norm S
nmoi.4 M = norm T
Assertion nmoi F S NGHom T X V M F X N F L X

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmoi.2 V = Base S
3 nmoi.3 L = norm S
4 nmoi.4 M = norm T
5 2fveq3 X = 0 S M F X = M F 0 S
6 fveq2 X = 0 S L X = L 0 S
7 6 oveq2d X = 0 S N F L X = N F L 0 S
8 5 7 breq12d X = 0 S M F X N F L X M F 0 S N F L 0 S
9 2fveq3 x = X M F x = M F X
10 fveq2 x = X L x = L X
11 10 oveq2d x = X r L x = r L X
12 9 11 breq12d x = X M F x r L x M F X r L X
13 12 rspcv X V x V M F x r L x M F X r L X
14 13 ad3antlr F S NGHom T X V X 0 S r 0 +∞ x V M F x r L x M F X r L X
15 1 isnghm F S NGHom T S NrmGrp T NrmGrp F S GrpHom T N F
16 15 simplbi F S NGHom T S NrmGrp T NrmGrp
17 16 adantr F S NGHom T X V S NrmGrp T NrmGrp
18 17 simprd F S NGHom T X V T NrmGrp
19 15 simprbi F S NGHom T F S GrpHom T N F
20 19 adantr F S NGHom T X V F S GrpHom T N F
21 20 simpld F S NGHom T X V F S GrpHom T
22 eqid Base T = Base T
23 2 22 ghmf F S GrpHom T F : V Base T
24 21 23 syl F S NGHom T X V F : V Base T
25 ffvelrn F : V Base T X V F X Base T
26 24 25 sylancom F S NGHom T X V F X Base T
27 22 4 nmcl T NrmGrp F X Base T M F X
28 18 26 27 syl2anc F S NGHom T X V M F X
29 28 adantr F S NGHom T X V X 0 S M F X
30 29 adantr F S NGHom T X V X 0 S r 0 +∞ M F X
31 elrege0 r 0 +∞ r 0 r
32 31 simplbi r 0 +∞ r
33 32 adantl F S NGHom T X V X 0 S r 0 +∞ r
34 17 simpld F S NGHom T X V S NrmGrp
35 simpr F S NGHom T X V X V
36 34 35 jca F S NGHom T X V S NrmGrp X V
37 eqid 0 S = 0 S
38 2 3 37 nmrpcl S NrmGrp X V X 0 S L X +
39 38 3expa S NrmGrp X V X 0 S L X +
40 36 39 sylan F S NGHom T X V X 0 S L X +
41 40 rpregt0d F S NGHom T X V X 0 S L X 0 < L X
42 41 adantr F S NGHom T X V X 0 S r 0 +∞ L X 0 < L X
43 ledivmul2 M F X r L X 0 < L X M F X L X r M F X r L X
44 30 33 42 43 syl3anc F S NGHom T X V X 0 S r 0 +∞ M F X L X r M F X r L X
45 14 44 sylibrd F S NGHom T X V X 0 S r 0 +∞ x V M F x r L x M F X L X r
46 45 ralrimiva F S NGHom T X V X 0 S r 0 +∞ x V M F x r L x M F X L X r
47 34 adantr F S NGHom T X V X 0 S S NrmGrp
48 18 adantr F S NGHom T X V X 0 S T NrmGrp
49 21 adantr F S NGHom T X V X 0 S F S GrpHom T
50 29 40 rerpdivcld F S NGHom T X V X 0 S M F X L X
51 50 rexrd F S NGHom T X V X 0 S M F X L X *
52 1 2 3 4 nmogelb S NrmGrp T NrmGrp F S GrpHom T M F X L X * M F X L X N F r 0 +∞ x V M F x r L x M F X L X r
53 47 48 49 51 52 syl31anc F S NGHom T X V X 0 S M F X L X N F r 0 +∞ x V M F x r L x M F X L X r
54 46 53 mpbird F S NGHom T X V X 0 S M F X L X N F
55 20 simprd F S NGHom T X V N F
56 55 adantr F S NGHom T X V X 0 S N F
57 29 56 40 ledivmul2d F S NGHom T X V X 0 S M F X L X N F M F X N F L X
58 54 57 mpbid F S NGHom T X V X 0 S M F X N F L X
59 eqid 0 T = 0 T
60 37 59 ghmid F S GrpHom T F 0 S = 0 T
61 21 60 syl F S NGHom T X V F 0 S = 0 T
62 61 fveq2d F S NGHom T X V M F 0 S = M 0 T
63 4 59 nm0 T NrmGrp M 0 T = 0
64 18 63 syl F S NGHom T X V M 0 T = 0
65 62 64 eqtrd F S NGHom T X V M F 0 S = 0
66 3 37 nm0 S NrmGrp L 0 S = 0
67 34 66 syl F S NGHom T X V L 0 S = 0
68 0re 0
69 67 68 eqeltrdi F S NGHom T X V L 0 S
70 1 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F
71 34 18 21 70 syl3anc F S NGHom T X V 0 N F
72 0le0 0 0
73 72 67 breqtrrid F S NGHom T X V 0 L 0 S
74 55 69 71 73 mulge0d F S NGHom T X V 0 N F L 0 S
75 65 74 eqbrtrd F S NGHom T X V M F 0 S N F L 0 S
76 8 58 75 pm2.61ne F S NGHom T X V M F X N F L X