| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|
| 2 |
|
nmoi.2 |
|
| 3 |
|
nmoi.3 |
|
| 4 |
|
nmoi.4 |
|
| 5 |
|
2fveq3 |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
5 7
|
breq12d |
|
| 9 |
|
2fveq3 |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
oveq2d |
|
| 12 |
9 11
|
breq12d |
|
| 13 |
12
|
rspcv |
|
| 14 |
13
|
ad3antlr |
|
| 15 |
1
|
isnghm |
|
| 16 |
15
|
simplbi |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
simprd |
|
| 19 |
15
|
simprbi |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
simpld |
|
| 22 |
|
eqid |
|
| 23 |
2 22
|
ghmf |
|
| 24 |
21 23
|
syl |
|
| 25 |
|
ffvelcdm |
|
| 26 |
24 25
|
sylancom |
|
| 27 |
22 4
|
nmcl |
|
| 28 |
18 26 27
|
syl2anc |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
elrege0 |
|
| 32 |
31
|
simplbi |
|
| 33 |
32
|
adantl |
|
| 34 |
17
|
simpld |
|
| 35 |
|
simpr |
|
| 36 |
34 35
|
jca |
|
| 37 |
|
eqid |
|
| 38 |
2 3 37
|
nmrpcl |
|
| 39 |
38
|
3expa |
|
| 40 |
36 39
|
sylan |
|
| 41 |
40
|
rpregt0d |
|
| 42 |
41
|
adantr |
|
| 43 |
|
ledivmul2 |
|
| 44 |
30 33 42 43
|
syl3anc |
|
| 45 |
14 44
|
sylibrd |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
34
|
adantr |
|
| 48 |
18
|
adantr |
|
| 49 |
21
|
adantr |
|
| 50 |
29 40
|
rerpdivcld |
|
| 51 |
50
|
rexrd |
|
| 52 |
1 2 3 4
|
nmogelb |
|
| 53 |
47 48 49 51 52
|
syl31anc |
|
| 54 |
46 53
|
mpbird |
|
| 55 |
20
|
simprd |
|
| 56 |
55
|
adantr |
|
| 57 |
29 56 40
|
ledivmul2d |
|
| 58 |
54 57
|
mpbid |
|
| 59 |
|
eqid |
|
| 60 |
37 59
|
ghmid |
|
| 61 |
21 60
|
syl |
|
| 62 |
61
|
fveq2d |
|
| 63 |
4 59
|
nm0 |
|
| 64 |
18 63
|
syl |
|
| 65 |
62 64
|
eqtrd |
|
| 66 |
3 37
|
nm0 |
|
| 67 |
34 66
|
syl |
|
| 68 |
|
0re |
|
| 69 |
67 68
|
eqeltrdi |
|
| 70 |
1
|
nmoge0 |
|
| 71 |
34 18 21 70
|
syl3anc |
|
| 72 |
|
0le0 |
|
| 73 |
72 67
|
breqtrrid |
|
| 74 |
55 69 71 73
|
mulge0d |
|
| 75 |
65 74
|
eqbrtrd |
|
| 76 |
8 58 75
|
pm2.61ne |
|