Metamath Proof Explorer


Theorem nmoi2

Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmoi.2 V = Base S
nmoi.3 L = norm S
nmoi.4 M = norm T
nmoi2.z 0 ˙ = 0 S
Assertion nmoi2 S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X L X N F

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmoi.2 V = Base S
3 nmoi.3 L = norm S
4 nmoi.4 M = norm T
5 nmoi2.z 0 ˙ = 0 S
6 simpl2 S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ T NrmGrp
7 simpl3 S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ F S GrpHom T
8 eqid Base T = Base T
9 2 8 ghmf F S GrpHom T F : V Base T
10 7 9 syl S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ F : V Base T
11 simprl S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ X V
12 10 11 ffvelrnd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ F X Base T
13 8 4 nmcl T NrmGrp F X Base T M F X
14 6 12 13 syl2anc S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X
15 14 rexrd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X *
16 1 nmocl S NrmGrp T NrmGrp F S GrpHom T N F *
17 16 adantr S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F *
18 2 3 5 nmrpcl S NrmGrp X V X 0 ˙ L X +
19 18 3expb S NrmGrp X V X 0 ˙ L X +
20 19 3ad2antl1 S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X +
21 20 rpxrd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X *
22 17 21 xmulcld S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F 𝑒 L X *
23 20 rpreccld S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ 1 L X +
24 23 rpxrd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ 1 L X *
25 23 rpge0d S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ 0 1 L X
26 24 25 jca S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ 1 L X * 0 1 L X
27 1 2 3 4 nmoix S NrmGrp T NrmGrp F S GrpHom T X V M F X N F 𝑒 L X
28 27 adantrr S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X N F 𝑒 L X
29 xlemul1a M F X * N F 𝑒 L X * 1 L X * 0 1 L X M F X N F 𝑒 L X M F X 𝑒 1 L X N F 𝑒 L X 𝑒 1 L X
30 15 22 26 28 29 syl31anc S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X 𝑒 1 L X N F 𝑒 L X 𝑒 1 L X
31 23 rpred S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ 1 L X
32 rexmul M F X 1 L X M F X 𝑒 1 L X = M F X 1 L X
33 14 31 32 syl2anc S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X 𝑒 1 L X = M F X 1 L X
34 14 recnd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X
35 20 rpcnd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X
36 20 rpne0d S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X 0
37 34 35 36 divrecd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X L X = M F X 1 L X
38 33 37 eqtr4d S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X 𝑒 1 L X = M F X L X
39 xmulass N F * L X * 1 L X * N F 𝑒 L X 𝑒 1 L X = N F 𝑒 L X 𝑒 1 L X
40 17 21 24 39 syl3anc S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F 𝑒 L X 𝑒 1 L X = N F 𝑒 L X 𝑒 1 L X
41 20 rpred S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X
42 rexmul L X 1 L X L X 𝑒 1 L X = L X 1 L X
43 41 31 42 syl2anc S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X 𝑒 1 L X = L X 1 L X
44 35 36 recidd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X 1 L X = 1
45 43 44 eqtrd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ L X 𝑒 1 L X = 1
46 45 oveq2d S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F 𝑒 L X 𝑒 1 L X = N F 𝑒 1
47 xmulid1 N F * N F 𝑒 1 = N F
48 17 47 syl S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F 𝑒 1 = N F
49 40 46 48 3eqtrd S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ N F 𝑒 L X 𝑒 1 L X = N F
50 30 38 49 3brtr3d S NrmGrp T NrmGrp F S GrpHom T X V X 0 ˙ M F X L X N F