Metamath Proof Explorer


Theorem nmoid

Description: The operator norm of the identity function on a nontrivial group. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmoid.1 N = S normOp S
nmoid.2 V = Base S
nmoid.3 0 ˙ = 0 S
Assertion nmoid S NrmGrp 0 ˙ V N I V = 1

Proof

Step Hyp Ref Expression
1 nmoid.1 N = S normOp S
2 nmoid.2 V = Base S
3 nmoid.3 0 ˙ = 0 S
4 eqid norm S = norm S
5 simpl S NrmGrp 0 ˙ V S NrmGrp
6 ngpgrp S NrmGrp S Grp
7 6 adantr S NrmGrp 0 ˙ V S Grp
8 2 idghm S Grp I V S GrpHom S
9 7 8 syl S NrmGrp 0 ˙ V I V S GrpHom S
10 1red S NrmGrp 0 ˙ V 1
11 0le1 0 1
12 11 a1i S NrmGrp 0 ˙ V 0 1
13 2 4 nmcl S NrmGrp x V norm S x
14 13 ad2ant2r S NrmGrp 0 ˙ V x V x 0 ˙ norm S x
15 14 leidd S NrmGrp 0 ˙ V x V x 0 ˙ norm S x norm S x
16 fvresi x V I V x = x
17 16 ad2antrl S NrmGrp 0 ˙ V x V x 0 ˙ I V x = x
18 17 fveq2d S NrmGrp 0 ˙ V x V x 0 ˙ norm S I V x = norm S x
19 14 recnd S NrmGrp 0 ˙ V x V x 0 ˙ norm S x
20 19 mulid2d S NrmGrp 0 ˙ V x V x 0 ˙ 1 norm S x = norm S x
21 15 18 20 3brtr4d S NrmGrp 0 ˙ V x V x 0 ˙ norm S I V x 1 norm S x
22 1 2 4 4 3 5 5 9 10 12 21 nmolb2d S NrmGrp 0 ˙ V N I V 1
23 pssnel 0 ˙ V x x V ¬ x 0 ˙
24 23 adantl S NrmGrp 0 ˙ V x x V ¬ x 0 ˙
25 velsn x 0 ˙ x = 0 ˙
26 25 biimpri x = 0 ˙ x 0 ˙
27 26 necon3bi ¬ x 0 ˙ x 0 ˙
28 20 18 eqtr4d S NrmGrp 0 ˙ V x V x 0 ˙ 1 norm S x = norm S I V x
29 1 nmocl S NrmGrp S NrmGrp I V S GrpHom S N I V *
30 5 5 9 29 syl3anc S NrmGrp 0 ˙ V N I V *
31 1 nmoge0 S NrmGrp S NrmGrp I V S GrpHom S 0 N I V
32 5 5 9 31 syl3anc S NrmGrp 0 ˙ V 0 N I V
33 xrrege0 N I V * 1 0 N I V N I V 1 N I V
34 30 10 32 22 33 syl22anc S NrmGrp 0 ˙ V N I V
35 1 isnghm2 S NrmGrp S NrmGrp I V S GrpHom S I V S NGHom S N I V
36 5 5 9 35 syl3anc S NrmGrp 0 ˙ V I V S NGHom S N I V
37 34 36 mpbird S NrmGrp 0 ˙ V I V S NGHom S
38 simprl S NrmGrp 0 ˙ V x V x 0 ˙ x V
39 1 2 4 4 nmoi I V S NGHom S x V norm S I V x N I V norm S x
40 37 38 39 syl2an2r S NrmGrp 0 ˙ V x V x 0 ˙ norm S I V x N I V norm S x
41 28 40 eqbrtrd S NrmGrp 0 ˙ V x V x 0 ˙ 1 norm S x N I V norm S x
42 1red S NrmGrp 0 ˙ V x V x 0 ˙ 1
43 34 adantr S NrmGrp 0 ˙ V x V x 0 ˙ N I V
44 2 4 3 nmrpcl S NrmGrp x V x 0 ˙ norm S x +
45 44 3expb S NrmGrp x V x 0 ˙ norm S x +
46 45 adantlr S NrmGrp 0 ˙ V x V x 0 ˙ norm S x +
47 42 43 46 lemul1d S NrmGrp 0 ˙ V x V x 0 ˙ 1 N I V 1 norm S x N I V norm S x
48 41 47 mpbird S NrmGrp 0 ˙ V x V x 0 ˙ 1 N I V
49 27 48 sylanr2 S NrmGrp 0 ˙ V x V ¬ x 0 ˙ 1 N I V
50 24 49 exlimddv S NrmGrp 0 ˙ V 1 N I V
51 1xr 1 *
52 xrletri3 N I V * 1 * N I V = 1 N I V 1 1 N I V
53 30 51 52 sylancl S NrmGrp 0 ˙ V N I V = 1 N I V 1 1 N I V
54 22 50 53 mpbir2and S NrmGrp 0 ˙ V N I V = 1